[1]
M. Griebel and M.A. Schweitzer, A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic PDEs, SIAM Journal of Sciencetific Computing, Vol. 22 (2000), 853–890.
DOI: 10.1137/s1064827599355840
Google Scholar
[2]
X. Zhang, P. Zhang and L. Zhang, An improved meshless method with almost interpolation property for isotropic heat conduction problems, Engineering Analysis with Boundary Elements, Vol. 37 (2013), 850–859.
DOI: 10.1016/j.enganabound.2013.03.004
Google Scholar
[3]
L.B. Lucy, A numerical approach to the testing of the fission hypothesis, Astronomical Journal, Vol. 82 (1977), 1013–1024.
Google Scholar
[4]
R.A. Gingold and J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly Notices of the Royal Astronomical Society, Vol. 181 (1977), 375–389.
DOI: 10.1093/mnras/181.3.375
Google Scholar
[5]
B. Nayroles, G. Touzot and P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements, Computational Mechanics, Vol. 10 (1992), 307–318.
DOI: 10.1007/bf00364252
Google Scholar
[6]
G.R. Liu, Meshfree Methods: Moving Beyond the Finite Element Method, 2nd ed., CRC Press, USA, (2009).
Google Scholar
[7]
H. Wang, Q.H. Qin and Y.L. Kang, A meshless model for transient heat conduction in functionally graded materials, Computational Mechanics, Vol. 38 (2006), 51–60.
DOI: 10.1007/s00466-005-0720-3
Google Scholar
[8]
X.W. Gao, A meshless BEM for isotropic heat conduction problems with heat generation and spatially varying conductivity, International Journal for Numerical Methods in Engineering, Vol. 66 (2006), 1411–1431.
DOI: 10.1002/nme.1602
Google Scholar
[9]
X.H. Wu, S.P. Shen and W.Q. Tao, Meshless local Petrov-Galerkin collocation method for two-dimensional heat conduction problems, CMES, Vol. 22 (2007), 65-76.
Google Scholar
[10]
A. Singh, I.V. Singh and R. Prakash, Meshless element free Galerkin method for unsteady nonlinear heat transfer problems, International Journal of Heat and Mass Transfer, Vol. 50 (2007), 1212–1219.
DOI: 10.1016/j.ijheatmasstransfer.2006.08.039
Google Scholar
[11]
I.V. Singh and M. Tanaka, Heat transfer analysis of composite slabs using meshless element free Galerkin method, Computational Mechanics, Vol. 38 (2006), 521–532.
DOI: 10.1007/s00466-005-0001-1
Google Scholar
[12]
J. Sladek, V. Sladek, C.L. Tan and S.N. Atluri, Analysis of Transient Heat Conduction in 3D Anisotropic Functionally Graded Solids, by the MLPG Method, CMES, Vol. 32 (2008), 161-174.
DOI: 10.1007/s00466-003-0470-z
Google Scholar
[13]
L. Chen and K.M. Liew, A local Petrov-Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems, Computational Mechanics, Vol. 47 (2011), 455–467.
DOI: 10.1007/s00466-010-0553-6
Google Scholar
[14]
S. Soleimani, M. Jalaal, H. Bararnia, E. Ghasemi, D.D. Ganji and F. Mohammadi, Local RBF-DQ method for two-dimensional transient heat conduction problem, International Communications in Heat and Mass Transfer, Vol. 37 (2010), 1411–1418.
DOI: 10.1016/j.icheatmasstransfer.2010.06.033
Google Scholar
[15]
C. de Boor, On calculating with B-splines, Journal of Approximation Theory, Vol. 6(l) (1972), 50-62.
Google Scholar
[16]
M. Cox, The numerical evaluation of B-spline, Journal of Institutional Mathematical Application, Vol. 10 (1972), 134-149.
Google Scholar
[17]
C. de Boor, A Practical Guide to Splines, revised ed., Springer, New York, (2001).
Google Scholar
[18]
M.R. Hematiyan, M. Mohammadi, L. Marin and A. Khosravifard, Boundary element analysis of uncoupled transient thermo-elastic problems with time- and space-dependent heat sources, Applied Mathematics and Computation, Vol. 218 (2011), 1862–1882.
DOI: 10.1016/j.amc.2011.06.070
Google Scholar
[19]
G. Farin, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, San Diego, CA, (2002).
Google Scholar
[20]
L. Piegl and W. Tiller, The NURBS book, Springer, New York, (1995).
Google Scholar