[1]
Ölander, A., An Electrochemical Investigation Of Solid Cadmium-Gold Alloys. Journal of the American Chemical Society, 1932. 54(10): pp.3819-3833.
DOI: 10.1021/ja01349a004
Google Scholar
[2]
Shabalovskaya, S., J. Anderegg, and J. Van Humbeeck, Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomaterialia, 2008. 4(3): pp.447-467.
DOI: 10.1016/j.actbio.2008.01.013
Google Scholar
[3]
Es-Souni, M., M. Es-Souni, and H. Fischer-Brandies, Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Analytical and Bioanalytical Chemistry, 2005. 381(3): pp.557-567.
DOI: 10.1007/s00216-004-2888-3
Google Scholar
[4]
Kim, H. -C., Y. -I. Yoo, and J. -J. Lee, Development of a NiTi actuator using a two-way shape memory effect induced by compressive loading cycles. Sensors and Actuators A: Physical, 2008. 148(2): pp.437-442.
DOI: 10.1016/j.sna.2008.08.019
Google Scholar
[5]
Predki, W., A. Knopik, and B. Bauer, Engineering applications of NiTi shape memory alloys. Materials Science and Engineering: A, 2008. 481-482: pp.598-601.
DOI: 10.1016/j.msea.2006.12.195
Google Scholar
[6]
Michiardi, A., et al., New Oxidation Treatment of NiTi Shape Memory Alloys to Obtain Ni-Free Surfaces and to Improve Biocompatibility. Wiley InterScience, (2005).
DOI: 10.1002/jbm.b.30441
Google Scholar
[7]
Chan, C.M., S. Trigwell, and T. Duerig, Oxidation of an NiTi alloy. Surface and Interface Analysis, 1990. 15(6): pp.349-354.
DOI: 10.1002/sia.740150602
Google Scholar
[8]
Tian, H., et al., Stability of Ni in nitinol oxide surfaces. Acta Biomaterialia, 2011. 7(2): pp.892-899.
DOI: 10.1016/j.actbio.2010.09.009
Google Scholar
[9]
Trépanier, C., et al., Effect of modification of oxide layer on NiTi stent corrosion resistance. Journal of Biomedical Materials Research, 1998. 43(4): pp.433-440.
DOI: 10.1002/(sici)1097-4636(199824)43:4<433::aid-jbm11>3.0.co;2-#
Google Scholar
[10]
Chu, C.L., S.K. Wu, and Y.C. Yen, Oxidation behavior of equiatomic TiNi alloy in high temperature air environment. Materials Science and Engineering A, 1996. 216(1-2): pp.193-200.
DOI: 10.1016/0921-5093(96)10409-3
Google Scholar
[11]
Tian, H., et al., TEM study of the mechanism of Ni ion release from Nitinol wires with original oxides, in ESOMAT 2009 - 8th European Symposium on Martensitic Transformations. 2009, EDP Sciences 2009: Prague, Czech Republic.
DOI: 10.1051/esomat/200905027
Google Scholar
[12]
Hesing, C., et al., High-Temperature Corrosion of NiTi-Shape-Memory Alloys. Materialwissenschaft und Werkstofftechnik, 2004. 35(5): pp.332-337.
DOI: 10.1002/mawe.200400746
Google Scholar
[13]
Vojtech, D., et al., Surface structure and corrosion resistance of short-time heat-treated NiTi shape memory alloy. Applied Surface Science, 2010. 257(5): pp.1573-1582.
DOI: 10.1016/j.apsusc.2010.08.097
Google Scholar
[14]
Vojtech, D., L. Joska, and J. Leitner, Influence of a controlled oxidation at moderate temperatures on the surface chemistry of nitinol wire. Applied Surface Science, 2008. 254(18): pp.5664-5669.
DOI: 10.1016/j.apsusc.2008.03.014
Google Scholar
[15]
Vojtěch, D., et al., Surface treatment of NiTi shape memory alloy and its influence on corrosion behavior. Surface and Coatings Technology, 2010. 204(23): pp.3895-3901.
DOI: 10.1016/j.surfcoat.2010.05.010
Google Scholar
[16]
Hassel, A.W., Surface treatment of NiTi for medical applications. Minimally Invasive Therapy & Allied Technologies, 2004. 13(4): pp.240-247.
DOI: 10.1080/13645700410020278
Google Scholar
[17]
Kim, K.S., et al., Effect of heat treatment temperature on oxidation behavior in Ni-Ti alloy. Materials Science and Engineering: A, 2008. 481-482: pp.658-661.
DOI: 10.1016/j.msea.2006.12.221
Google Scholar
[18]
Paryab, M., et al., Effect Of Heat Treatment On The Microstructural And Superelastic Behavior Of Niti Alloy With 58. 5wt% Ni Association of Metallurgical Engineers of Serbia AMES 2010. 16 (2): p.9.
Google Scholar
[19]
Miller, D.A. and D.C. Lagoudas, Influence of cold work and heat treatment on the shape memory effect and plastic strain development of NiTi. Materials Science and Engineering: A, 2001. 308(1–2): pp.161-175.
DOI: 10.1016/s0921-5093(00)01982-1
Google Scholar