[1]
Y.J. Wang, Z.M. Liu, S.R. Wang and L.Y. Yang. Fabrication and tribological properties of HSS-based self-lubrication composites with an interpenetrating network. Lubrication Science. 22(2010) 453-463.
DOI: 10.1002/ls.112
Google Scholar
[2]
F.Y. Zhang, H. Yan. Research and development on the fabrication process of metal matrix composites. Forging & Stamping Technology. 6(2006)100-105.
Google Scholar
[3]
Z.M. Liu, Y.J. Wang, B.Y. Zhang. Research on the theory and technology of the sweating self -lubrication at elevated temperature. Digital Manufacturing Science. 9(2011) 1-4.
Google Scholar
[4]
Y.J. Wang, Z.M. Liu, F. Zhao. Study of tribological properties of high temperature self-lubrication composites with an interpenetrating network. Lubrication Engineering. 34(2009) 17-21.
Google Scholar
[5]
X.M. Feng, C.C. Zhang. Composite materials. Chongqing: Chongqing University Press, (2007) 1-3.
Google Scholar
[6]
W. F. Li. Solid self-lubricating materials and its research trend. Lubrication Engineering. 32(2007) 118-122.
Google Scholar
[7]
S.Z. Wen. Principles of tribology. Beijing: Tsinghua University Press, (2002) 304-306.
Google Scholar
[8]
L.J. LI, D.S. Xiong. Tribological properties of nickel-based self-lubricating composite at elevated temperature and counterface material selection. Wear. 265(2008) 533-539.
DOI: 10.1016/j.wear.2007.09.005
Google Scholar
[9]
K A Sierros, T S Bejitual, S Cronin, A J Kessman, S N Kukureka, D R Cairns. Tribo-corrosion of Ag and Ag-alloy ITO multilayers used in solar energy applications. Wear. 271(2011) 1438-1444.
DOI: 10.1016/j.wear.2010.12.077
Google Scholar
[10]
K Rajkumar, S Aravindan, M Kulkrni. Accelerated wear testing for evaluating the life characteristics of copper-graphite tribological composite. Materials and Design. 32(2011) 3029-3035.
DOI: 10.1016/j.matdes.2011.01.046
Google Scholar
[11]
C.C. Wang, R.C. Wang. Research progress of metallic solid self-lubricating composites. The Chinese Journal of Nonferrous Metals. 22(2012) 1945-(1956).
Google Scholar
[12]
A. Mimaroglu, I. Taymaz, A. Ozel, S. Arslan. Influence of the addition of Cr2O3 and SiO2 on the tribological performance of alumina ceramics. Surface and Coatings Technology. (2003) 405-407.
DOI: 10.1016/s0257-8972(03)00136-1
Google Scholar
[13]
J.H. Ouyang, S. Sasaki, T. Murakami, K. Umeda. The synergistic effects of CaF2 and Au lubricants on tribological properties of spark-plasma-sintered ZrO2(Y2O3) matrix composites. Materials Science and Engineering. (2004) 234-243.
DOI: 10.1016/s0921-5093(04)00965-7
Google Scholar
[14]
M.K. Wei, J.M. Song, Q. Deng. Study of manufacture of Al2O3-based ceramic friction material and its properties. Ceramic. 10(2006) 24-26.
Google Scholar
[15]
Y.P. Pu, G.S. Lv, Q. Wang. Development of several self-lubricating materials of polymer matrix. Acta Aeronautica et Astronautica Sinica. 25(2004) 180-186.
Google Scholar
[16]
M.M. Shi. Solid lubricating materials. Beijing: Chemical Industry Press. (2009).
Google Scholar
[17]
Y.F. Li, J.H. Ouyang,Y. Zhou. Research and development status of high temperature solid lubricant materials. Heat Treatment Technology and Equipment. 28(2007) 2-9.
Google Scholar
[18]
J. L. Li, D. S. Xiong. Tribological properties of nickel-based self-lubricating composite at elevated temperature and counterface material selection. Wear. 265(2008) 533-539.
DOI: 10.1016/j.wear.2007.09.005
Google Scholar
[19]
M.Q. Xue. Oxidation behavior of Ni-Cr based powder metallurgy composites containing MoS2 at high temperature. Materials for Mechanical Engineering. 32(2008): 67-69.
Google Scholar
[20]
R.T. Liu, X.B. Li. Effects of MoS2 addiction on the tribological characteristics of self-lubricating nickel-base material. Powder Metallurgy Technology. 18(2000) 31-34.
Google Scholar