Numerical Solution of Temperature Field for Stress Analysis of Plate Structures

Article Preview

Abstract:

In the paper is described the solution of unsteady temperature field of multilayer plane structures. Nonlinear material and thermal properties of each layer for high temperature and fire is used. Defining the boundary conditions and calculation of the temperature at the contact material layers of the conditions of equality thermal flux is performed. The compiled program NONSTAC programmed numerical solution of differential equations modified heat conduction Euler and Runge - Kutta method with a variable integration step length. This computer program solves one dimensional temperature distribution. It is possible to input appropriate thermal characteristics as a function of temperature and to take into account heat of hydration development and variation of environment temperature. Calculated temperatures can be used for stress and strain analysis of shallow foundations with slide joint in footing bottom and fire resistance of plate structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-187

Citation:

Online since:

December 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ČSN 73 1208 The design of waterworks concrete structures, ČNI 09/(2010).

Google Scholar

[2] ČSN EN 1991-1-2 (73 0035) Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. ČNI 08/(2004).

DOI: 10.1002/9783433601570.oth1

Google Scholar

[3] ČSN EN 1991-1-5 (73 0035) Eurocode 1: Actions on structures - Part 1-5: General actions - Thermal Actions. ČNI 05/(2005).

Google Scholar

[4] R. Cajka, Temperature effects of large-scale foundation structures (in Czech). Journal Beton a zdivo, No. 1-2/1993, ČBS 1993, pp.57-60 (in Czech).

Google Scholar

[5] R. Cajka, P. Zidkova: Fire resistance of garage plate-wall prefabricated structure, COST 12 – Final Conference Proceedings, 20th – 22nd January 2005, University of Innsbruck, Austria, ISBN 04 1536 609 7.

DOI: 10.1201/9780203970843.ch32

Google Scholar

[6] R. Cajka, P. Mateckova: Different Types of Pre-Stressed Hollow Core Panels and their Fire Resistance According to Eurocodes. Journal of Structural Fire Engineering, Volume 1, Number 4, December 2010, Multi-Science Publishing, ISSN 2040-2317.

DOI: 10.1260/2040-2317.1.4.243

Google Scholar

[7] R. Cajka, P. Mateckova: Study of slab fire resistance according to Eurocode using different computational methods. International Conference Application of Structural Fire Engineering. Prague 29. 4. -30. 4. 2011. ISBN-978-80-01-04798-9.

Google Scholar

[8] R. Cajka, P. Kucera, P. Mateckova: Numerical analysis of concrete tunnel lining exposed to fire. IABSE Symposium Weimar 2007, ISBN 978-3-85748-116-1.

DOI: 10.2749/weimar.2007.0691

Google Scholar

[9] R. Cajka, P. Kucera, P. Mateckova: Concrete plane structures loaded by high temperature. The 5th international Conference on Concrete under Severe Conditions of Environment and Loading (CONSEC'07), June 4-6, 2007, Tours, France, ISSN 1626-4704.

Google Scholar

[10] R. Cajka, P. Mateckova: Influence of humidity on heat-exposure and mechanical response of concrete structure exposed to high temperatures. Fib Symposium Keep Concrete Attractive, 22-25 May 2005, Budapest, Hungary, ISBN 963-420-839-8.

Google Scholar

[11] R. Cajka, P. Mateckova, Temperature distribution of slide joint in reinforced concrete foundation structures. 17th International Conference on Engineering Mechanics 2011, May 9. -12. 2011, Svratka, Czech Republic, ISBN 978-80-87012-33-8, WOS: 000313492700017.

Google Scholar

[12] R. Cajka, P. Mateckova, M. Janulikova: Bitumen Sliding Joints for Friction Elimination in Footing Bottom. Applied Mechanics and Materials, Vol. 188 (2012).

DOI: 10.4028/www.scientific.net/amm.188.247

Google Scholar

[13] P. Kucera, L. Jurencak: Validation of Results of Fire Tests at the Flashover Container. 10th WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment (HTE '12), Istanbul, Turkey, August 21-23, (2012).

Google Scholar

[14] P. Nevřiva, Simulation of control systems on the digital computer. SNTL Praha, 1975. 136 s.

Google Scholar

[15] M. Trapeznikova, B. Chetverushkin, N. Churbanova, D. Morozov: Two-Phase Porous Media Flow Simulation on a Hybrid Cluster. I. Lirkov, S. Margenov, and J. Was´niewski (Eds. ): LSSC 2011, LNCS 7116, (c) Springer-Verlag Berlin Heidelberg 2012, p.646–653, (2012).

DOI: 10.1007/978-3-642-29843-1_74

Google Scholar

[16] R. Cajka, Accuracy of Stress Analysis Using Numerical Integration of Elastic Half-Space (2013).

Google Scholar

[17] R. Cajka, R. Fojtik, Development of Temperature and Stress during Foundation Slab Concreting of National Supercomputer Centre IT4. Procedia Engineering, Volume 65, 2013, Pages 230-235, ISSN 1877-7058, doi: 10. 1016/j. proeng. 2013. 09. 035.

DOI: 10.1016/j.proeng.2013.09.035

Google Scholar

[18] R. Cajka, P. Mateckova, Fire Resistance of Ceiling Slab Concreted in Trapezoidal Sheet. Procedia Engineering, Volume 65, 2013, Pages 393-396, ISSN 1877-7058, doi: 10. 1016/j. proeng. 2013. 09. 061.

DOI: 10.1016/j.proeng.2013.09.061

Google Scholar

[19] R. Cajka, Horizontal Friction Parameters in Soil – Structure Interaction Tasks. Advanced Materials Research, Vol. 818 (2013), pp.197-205, Trans Tech Publications, Switzerland, doi: 10. 4028/www. scientific. net/AMR. 818. 197.

DOI: 10.4028/www.scientific.net/amr.818.197

Google Scholar

[20] R. Cajka, Analysis of Stress in Half-space using Jacobian of Transformation and Gauss Numerical Integration. Advanced Materials Research, Vol. 818 (2013).

DOI: 10.4028/www.scientific.net/amr.818.178

Google Scholar