[1]
E.M. Kerwin: Damping of flexural waves by aconstrained viscoelastic layer [J]. Acoust. Soc. Am. (1959).
Google Scholar
[2]
D.J. Mead, S. Markus: The forced vibration of a three_layer damped sandwich bam with arbitrary boundary conditions [J]. Sound Vibr. (1969).
DOI: 10.1016/0022-460x(69)90193-x
Google Scholar
[3]
D.K. Rao: Vibration of short sandwich beams [J]. SoundVibr. (1977).
Google Scholar
[4]
D.J. Mead: Flexural vibration of damped sandwichbeams [J]. Sound Vibr. (1982).
Google Scholar
[5]
N.N. Miles, P.G. Reinhall: An analytical model forthe vibration of laminated beams including the effects of both shear and thickness deformation in the adhesive layer ASME [J]. Vibr. Acoust. 108: 56–64. (1986).
DOI: 10.1115/1.3269304
Google Scholar
[6]
Y. Frostig, M. Baruch.: Free vibrations of sandwichbeams with a transversely flexible core: a high order approach [J]. Sound Vibr. 176: 195–208. (1994).
DOI: 10.1006/jsvi.1994.1368
Google Scholar
[7]
J. Vaswani, N.T. Asnani, B.C. Nakra: Vibration and damping analysis of curved sandwich beams with a viscoelastic core. Composite Struct. (1988).
DOI: 10.1016/0263-8223(88)90021-9
Google Scholar
[8]
S. He, M.D. Rao: Prediction of loss factors ofcurved sandwich beams [J]. Sound Vibr. (1992).
Google Scholar
[9]
Liu Hua.: Viscous Elastic Amortization Shock Absorbing Technique. Beijing: publishing house pf china astronautic, 54-69. (1990).
Google Scholar
[10]
Tan Feng.: Analysis and Optimization of Viscoelastic Damping Structures in Vibration Noise Reduction, Shanghai JiaoTong University, (2010).
Google Scholar
[11]
Cao Yinping, Shi Xiuhua, Shao Xin.: Finite Element Analysis of Vibration Characteristics of Damped Composite Cantilever Beams, Computer Simulation, (2009).
Google Scholar
[12]
Sheng Meiping, Wang Minqing, Sun Jincai.: The basis of noise and oscillatory control technology [M]. Beijing: Science Press, (2001).
Google Scholar
[13]
Dai Depei: The Damping Technology for Vibration and noise control[M]. Xi'an: Xi'an Jiaotong University Press, (1986).
Google Scholar