Numerical Research on the Changing of the Slip-Line Field in Hard Turning of Case Hardened Steels

Article Preview

Abstract:

The article examines the change of the slip-line fields structure with the help of numerical simulation (FEM) in the case of hard turning by gradually decreasing the tool rake angle. During the examination the influencing effect of the stagnation zone on the chip removal was taken into consideration. The stagnation zone is typical of the cutting done by a negative rake angle and it is generally present in front of the tool tip.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

399-404

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Weinert., D. Biermann, Spanende Fertigung. Vulkan Verlag, Essen, 2008. pp.29-55., 168-187.

Google Scholar

[2] N. Taniguchi, Current status in, and future trends of ultraprecision machining and ultrafine materials processing. Annals of the CIRP, Vol. 32/2 (1983) pp.573-582.

DOI: 10.1016/s0007-8506(07)60185-1

Google Scholar

[3] G. M. Maitra, Handbook of gear design. McGraw Hill, New Delhi, 2010, pp.18-24.

Google Scholar

[4] T. Bausch et al, Innovative Zahnradfertigung. Expert Verlag, Renningen, 2011, pp.1-4., 366-389.

Google Scholar

[5] S. P. Radzevich, Dudley's handbook of practical gear design and manufacture. CRC Press, Boca Raton, 2012. pp.371-417.

Google Scholar

[6] H. K. Tönshoff, C. Arendt, R. Ben Amor, Cutting of hardened steel. Annals of the CIRP, Vol. 49/2 (2000) pp.547-566.

DOI: 10.1016/s0007-8506(07)63455-6

Google Scholar

[7] G. Ackerschott, Grundlagen der Zerspanung einsatzgehärteter Stähle mit geometrisch bestimmter Schneide. Dissertation RWTH, Aachen (1989).

DOI: 10.1007/978-3-662-07204-2_3

Google Scholar

[8] G. Varga, Effects of Technological Parameters on the Surface Texture of Burnished Surfaces, Key Engineering Materials, Vol. 581 (2014) Precision Machining VII, pp.403-408. ISSN 1013-9826.

DOI: 10.4028/www.scientific.net/kem.581.403

Google Scholar

[9] K. -F. Koch, Technolgie des Hochpräzisions-Hartdrehens. Dissertation RWTH Aachen. Shaker Verlag, Aachen, 1996, Band 5/96.

Google Scholar

[10] S. Jochmann, Untersuchungen zur Prozess- und Werkzeugauslegung beim Hochpräzisionshartdrehen. Dissertation RWTH Aachen, Shaker Verlag, Aachen, 2001, Band 19/(2001).

Google Scholar

[11] J. P. Davim et al., Surface integrity in machining. Springer Verlag, London, (2010).

Google Scholar

[12] E. Brinksmeier, Prozeß- und Werkstückqualität in der Feinbearbeitung. Habilitation Universität Hannover. VDI Verlag, Düsseldorf, pp.51-56. (1991).

Google Scholar

[13] W. König, R. Komanduri, H. K. Tönshoff, G. Ackerschott, Machining of hard materials. CIRP Annals Vol. 33/2 (1984) pp.417-427.

DOI: 10.1016/s0007-8506(16)30164-0

Google Scholar

[14] Y. Ohbuchi, T. Obikawa, Finite element modeling of formation in the domain of negative rake angle cutting. Transactions of the ASME, Vol. 125/July (2003) pp.324-332.

DOI: 10.1115/1.1590999

Google Scholar

[15] M. E. Merchant, Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. Journal of Applied Physics, Vol. 16/5 (1945) pp.267-275.

DOI: 10.1063/1.1707586

Google Scholar

[16] E. H. Lee, B. W. Shaffer, The theory of plasticity applied to a problem of machining. Transactions of the ASME, Vol. 18. (1951) pp.405-413.

Google Scholar

[17] A. L. Vorontsov, N. M. Sultan-zade, A. Yu. Albagachiev, Development of a new theory of cutting: 2. A Review of Cutting Theory. Russian Engineering Research, Vol. 28/2. (2008) pp.144-155.

DOI: 10.3103/s1068798x0804014x

Google Scholar

[18] P. L. B. Oxley, The mechanics of machining: an analytical approach to assessing machinability, Ellis Horwood Limited, Chicester, UK, (1989).

Google Scholar

[19] N. N. Zorev, Metal cutting mechanics. Pergamon Press, (1966).

Google Scholar

[20] N. Fang, tool-chip friction in machining with a large negative rake angle tool. Wear, Vol. 258. (2005) pp.890-897.

DOI: 10.1016/j.wear.2004.09.047

Google Scholar

[21] D. A. Stephenson, J. S. Agapiou, Metal cutting theory and practice. CRC Press, Boca Raton US, (2005).

Google Scholar

[22] J. Beňo, Theory of metal cutting (in Slovakian). Vienala Košice, (1999).

Google Scholar

[23] T. Atkins, The Science and engineering of cutting. Butterworth-Heinemann&Elsevier, (2009).

Google Scholar

[24] O. Bílek, I. Lukovics, Determination of the Residual Stress Through the Thickness of Plastic and Metalic.

Google Scholar

[25] Parts. Manufacturing Technology. 2006, Vol. VI., pp.12-16, ISSN 1213248-9.

Google Scholar

[26] Z. Palmai, Machinability of metals (in Hungarian). Műszaki Könyvkiadó, Budapest, (1983).

Google Scholar

[27] B. Mikó, J. Beňo, I. Maňkova, Experimental verification of cusp heights when 3D milling rounded surfaces, Acata Politechnica Hungarica, Vol 9/6 (2012) pp.101-116.

DOI: 10.12700/aph.9.6.2012.6.7

Google Scholar

[28] S. Aykut, A. Kentli, S. Gülmez, O. Yazicioglu, Robust multiobjective optimization of cutting parameters in face milling, Acata Politechnica Hungarica, Vol 9/4 (2012) pp.85-100.

Google Scholar

[29] J. Kundrak, The scientific principles of increasing the effectiveness of inner surfaces' cutting with CBN tools. Academic Doctoral Dissertation. Kharkov, 1996 p.368. (In Russian).

Google Scholar

[30] V. P. Astakhov, Metal cutting mechanics, CRC Press, Boca Raton, (1999).

Google Scholar

[31] M. C. Shaw, Metal cutting principles. Oxford University Press, New York, 2005. pp.472-478.

Google Scholar

[32] Third Wave AdvantEdgeTM User's Manual, Version 5. 9.

Google Scholar

[33] I. Al-Zkeri, Finite Element Modeling of Hard Turning. VDM Verlag Dr. Müller. Saarbrücken, (2008).

Google Scholar

[34] CSN 41 4220/ISO 683/11-73.

Google Scholar

[35] O. C. Zienkiewicz, R. L. Taylor, The finite element method. For solid and structural mechanics. Butterworth-Heinemann&Elsevier, (2005).

Google Scholar

[36] A. G. Mamalis, J. Kundrak, K. Gyani, On the dry machining of steel surfaces using superhard tools. International Journal of Advanced Manufacturing Technology. Vol. 19. (2002) pp.157-162.

DOI: 10.1007/s001700200009

Google Scholar

[37] G. Szabo, J Kundrak, Investigation on coherences between residual stresses and tool geometry by hard turning. Hungarian Journal of Industrial Chemistry. Vol. 39/2 (2011) pp.289-294.

Google Scholar