A Bandgap Reference without Passive Components Based on Standard CMOS

Article Preview

Abstract:

A bandgap reference without passive components based on standard CMOS is proposed. Using an improved inverse-function technique without any curvature-compensated techniques, two reference voltages are got in different temperature ranges. One is 1.56V with a temperature coefficient of 9.2ppm/°C in the range [0, 14 °C at 3.3V supply voltage, and the other is 1.546V with 47ppm/°C in [-25, 15 °C at 3.3V. Its PSRR (power supply rejection ratio) is below-60dB at 10kHz, and it is quite suitable for integration in processing circuits of MEMS (micro-electro-mechanical systems) devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1679-1684

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. E. Buck, C. L. McDonald, S. H. Lewis and T. R. Viswanathan, A CMOS Bandgap Reference without Resistors, IEEE J. Solid-State Circuits, vol. 37, pp.81-83, Jan. (2002).

DOI: 10.1109/4.974548

Google Scholar

[2] G. D. Vita and G. Iannaccone, A Sub-1-V, 10 ppm/°C, Nanopower Voltage Reference Generator, IEEE J. Solid-State Circuits, vol. 42, pp.1536-1542, Jul. (2007).

DOI: 10.1109/jssc.2007.899077

Google Scholar

[3] A. Cabrini, G. D. Sandre, L. Gobbi, P. Malcovati, M. Pasotti, M. Poles, F. Rigoni and G. Torelli, A 1 V, 26 μW Extended Temperature Range Band-gap Reference in 130-nm CMOS Technology, Proceedings of the 31st European Solid-State Circuits Conference (ESSCIRC 2005), pp.503-506, Sep. (2005).

DOI: 10.1109/esscir.2005.1541670

Google Scholar

[4] X. F. Gong, M. J. Liu, B. Zhou and J. X. Dong, A Novel Wide Temperature Range Bandgap Reference, 55th International Midwest Symposium on Circuits and Systems (MWSCAS 2012), pp.506-509, Aug. (2012).

DOI: 10.1109/mwscas.2012.6292068

Google Scholar

[5] H. Y. Huang, R. J. Wang and S. C. Hsu, Piecewise Linear Curvature-Compensated CMOS Bandgap Reference, 15th IEEE International Conference on Electronics, Circuits and Systems (ICECS 2008), pp.308-311, Aug. (2008).

DOI: 10.1109/icecs.2008.4674852

Google Scholar

[6] K. N. Leung and P. K. T. Mok, A CMOS Voltage Reference Based on Weighted ΔVGS for CMOS Low-Dropout Linear Regulators, IEEE J. Solid-State Circuits, vol. 38, pp.146-150, Jan. (2003).

DOI: 10.1109/jssc.2002.806265

Google Scholar

[7] A. Boni, Op-Amps and Startup Circuits for CMOS Bandgap References With Near 1-V Supply, IEEE J. Solid-State Circuits, vol. 37, pp.1339-1343, Oct. (2002).

DOI: 10.1109/jssc.2002.803055

Google Scholar

[8] D. Johns and K. Martin, Analog Integrated Circuit Design, Wiley, (1996).

Google Scholar

[9] W. M. C. Sansen, Analog Design Essentials, Springer, (2006).

Google Scholar