An Energy Efficient Clustering Protocol Based on Niching Particle Swarm Optimization for Wireless Sensor Networks

Article Preview

Abstract:

According to the energy constraints characteristics of Wireless Sensor Networks, how to optimize clustering, reduce the node energy consumption and balance the network energy dissipation is an main target, we proposes an Energy Efficient Clustering protocol based on Niching Particle Swarm Optimization (NPSO-EEC), the algorithm considers the factors such as the nodes residual energy and neighbor nodes status, etc. The simulation results show that the proposed protocol can balance the nodes energy consumption effectively, reduce the sensor nodes death rate, and prolong the network lifetime.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

500-503

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yick J, Mukherjee B, Ghosal D. Wireless sensor network survey. Computer Networks, 2008, 52(12): 2292–2330.

DOI: 10.1016/j.comnet.2008.04.002

Google Scholar

[2] Abbasi A, Younis M. A survey on clustering algorithms for wireless sensor networks. Computer Communications, 2007, 30(14-15): 2826–2841.

DOI: 10.1016/j.comcom.2007.05.024

Google Scholar

[3] Bollobas B. Random Graphs. [S. 1. ]: Academic Press, (1985).

Google Scholar

[4] Wang D W, Yung K L, Ip W H. A Heuristic Genetic Algorithm for Subcontractor Selection in a Global Manufacturing Environment. IEEE Trans. SMC Part-C, 2001, 31(2): 189-198.

DOI: 10.1109/5326.941842

Google Scholar

[5] Kulkarni R, Venayagamoorthy G. Particle Swarm Optimization in Wireless Sensor Networks: A Brief Survey. IEEE Trans. Systems, Man & Cybernetics, 2011, 41(2): 262-267.

DOI: 10.1109/tsmcc.2010.2054080

Google Scholar

[6] Li Xd. Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology. IEEE Trans Evol. Comput., 2010, 14(1): 150-169.

DOI: 10.1109/tevc.2009.2026270

Google Scholar

[7] Latiff N, Tsimenidis C, Sharif B. Performance comparison of optimization algorithms for clustering in wireless sensor networks. Proc IEEE Int. Conf. Mobile Ad Hoc Sens. Syst. 2007: 1–4.

DOI: 10.1109/mobhoc.2007.4428638

Google Scholar

[8] Xu R, Xu J. A Comparison Study of Validity Indices on Swarm-Intelligence-Based Clustering. IEEE Trans. Systems, Man & Cybernetics, 2012, 42(4): 1243-1256.

DOI: 10.1109/tsmcb.2012.2188509

Google Scholar

[9] Latiff N, Tsimenidis C, Sharif B. Energy-aware clustering for wireless sensor networks using particle swarm optimization. Proc IEEE PIMRC, 2007: 1-5.

DOI: 10.1109/pimrc.2007.4394521

Google Scholar

[10] Liang Y, Yu H B, Zeng P. Optimization of clusterbased routing protocols in wireless sensor network using PSO. Control & Decision, 2006, 21(4): 453-456.

Google Scholar

[11] Heinzelman W B, Chandrakasan A P, Balakrishnan H. An Application-Specific Protocol Architecture for Wireless Microsensor Networks. IEEE Trans. Wireless Commun., 2002, 1(4): 660–770.

DOI: 10.1109/twc.2002.804190

Google Scholar

[12] Rappaport T. Wireless Communications: Principles & Practice. New Jersey: Prentice-Hall, 1996: 87-98.

Google Scholar

[13] Kennedy J, Eberhart R. Particle swarm optimization. Proc IEEE Int. Conf. Neural Netw. 1995: 1942–(1948).

Google Scholar

[14] Li C, Yang S, Nguyen T. A Self-Learning Particle Swarm Optimizer for Global Optimization Problems. IEEE Trans. Systems, Man & Cybernetics, 2012, 42(3): 627-646.

DOI: 10.1109/tsmcb.2011.2171946

Google Scholar