Performance of Manganese Oxide Reference Electrode for Concrete Monitoring with Inner Alkaline Electrolytes

Article Preview

Abstract:

Manganese oxide electrode (MnO2) is a promising reference electrode imbedded in concrete for long-term health monitoring of concrete structure. The MnO2 electrodes made of the high purity graphite powders, the MnO2 powders and Ca (OH)2 powders mixed with the inner alkaline electrolytes such as saturated Ca (OH)2 solution or synthetic concrete pore solution are manually assembled. The rejection ratios, reproducibilities, stabilities and the effects of temperature and NaCl concentration in outer electrolyte (synthetic concrete pore solution) on potentials of the MnO2 electrodes are comparatively experimented. And then the comprehensive properties of the MnO2 electrodes are analyzed based on their potentials relative standard error (PRSE). Though the relative high rejection ratio of MnO2 electrode is induced by the manual method, the following results and conclusions can be drawn. Firstly the MnO2 electrodes express good performances with little potential fluctuations in outer synthetic concrete pore solution. Secondly the potentials under condition of certain temperature or certain NaCl concentration, the reproducibilities and stabilities of MnO2 electrodes are influenced by their inner alkaline electrolytes. Especially the potential of the MnO2 electrode with the inner saturated Ca (OH)2 solution in outer electrolyte with high NaCl concentration is more outstandingly stable than the one with the inner synthetic concrete pore solution. The third the MnO2 electrode with inner synthetic concrete pore solution has better comprehensive property than the one with inner saturated Ca (OH)2 solution when the temperature is less than 50 °C or the NaCl concentration is not greater than 0.1 mol/L in outer electrolyte.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

504-509

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ha T. H., Muralidharan S., Bae J. H., et al. Role of sensors in corrosion monitoring in concrete structures: the state of the art[J]. Sens mater, 2004, 16(3), 133-158.

Google Scholar

[2] Myrdal R. The electrochemistry & characteristics of embeddable reference electrodes for concrete (EFC43)[M]. Woodhead publishing, CRC press, New York, (2007).

DOI: 10.1533/9781845692551.13

Google Scholar

[3] Ansuini F. J. and Dimond J. R. Long term field tests of reference electrodes for concrete-ten year results[C]. Corrosion2001, paper No. 296, NACE international, Houston, TX, USA, (2001).

Google Scholar

[4] ASTM Committee. Standard Test Method for Half Cell Potentials of Reinforcing Steel in Concrete (G01. 14. ASTM C876, American National Standard) [S]. West Conshohocken, Annual Book of ASTM Standards, (1999).

Google Scholar

[5] Qiao G, Xiao H, Hong Y. and Qiu Y. Preparation and characterization of the solid-state Ag/AgCl reference electrode for RC structures[J]. Sensor Review, 2012, 32(2), 118-122.

DOI: 10.1108/02602281211209400

Google Scholar

[6] Villela T, Souza A, Abdel-Rehim H. Silver/silver chloride and mercury/mercurous sulfate standards electrodes confiability[J]. Corrosion, 2004, 60(4), 342-345.

DOI: 10.5006/1.3287740

Google Scholar

[7] Duffó, G. S., Farina, S. B., and Giordano, C. M. Embeddable reference electrodes for corrosion monitoring of reinforced concrete structures[J]. Materials and corrosion, 2010, 61(6), 480-489.

DOI: 10.1002/maco.200905346

Google Scholar

[8] Duffó G S, Farina S B, Giordano C M. Characterization of solid embeddable reference electrodes for corrosion monitoring in reinforced concrete structures[J]. Electrochimica Acta, 2009, 54(3), 1010-1020.

DOI: 10.1016/j.electacta.2008.08.025

Google Scholar

[9] Muralidharan, S., Ha, T. H., Bae, J. H., Ha, Y. C., Lee, H. G., Park, K. W., & Kim, D. K. Electrochemical studies on the performance characteristics of solid metal–metal oxide reference sensor for concrete environments[J]. Electrodes and Actuators B: Chemical, 2006, 113(1), 187-193.

DOI: 10.1016/j.snb.2005.02.052

Google Scholar

[10] Muralidharan, S., Saraswathy, V., Berchmans, L. J., Thangavel, K., & Ann, K. Y. Nickel ferrite (NiFe2O4): A possible candidate material as reference electrode for corrosion monitoring of steel in concrete environments[J]. Electrodes and Actuators B, Chemical, 2010, 145(1), 225-231.

DOI: 10.1016/j.snb.2009.11.071

Google Scholar

[11] Muralidharan, S., Ha, T. H., Bae, J. H., Ha, Y. C., Lee, H. G., & Kim, D. K. A promising potential embeddable sensor for corrosion monitoring application in concrete structures [J]. 2007, Measurement, 40(6), 600-606.

DOI: 10.1016/j.measurement.2006.09.008

Google Scholar

[12] Muralidharan, S., Ha, T. H., Bae, J. H., Ha, Y. C., Lee, H. G., Park, K. W., & Kim, D. K. Electrochemical studies on the solid embeddable reference electrodes for corrosion monitoring in concrete structure[J]. Materials Letters, 2006, 60(5), 651-655.

DOI: 10.1016/j.matlet.2005.09.058

Google Scholar

[13] Muralidharan S., Saraswathy V., Thangavel K., et al. Electrochemical studies on the performance characteristics of alkaline solid embeddable sensor for concrete environments[J]. Sensors and Actuators B: Chemical, 2008, 130(2), 864-870.

DOI: 10.1016/j.snb.2007.10.059

Google Scholar

[14] Lu S, Ba H.J. and Yang Y.Z. MnO2 reference electrode for monitoring corrosion in concrete structure[J]. Journal of wuhan university of technology, 2009, 31 (2). 42-45.

Google Scholar

[15] Subramanian V., Zhu H., Vajtai R., et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures[J]. The journal of physical chemistry B, 2005, 109(43), 20207-20214.

DOI: 10.1021/jp0543330

Google Scholar

[16] Minakshi M. Examining manganese dioxide electrode in KOH electrolyte using TEM technique[J]. Journal of the electroanalytical chemistry, 2008, 616(1), 99-106.

DOI: 10.1016/j.jelechem.2008.01.011

Google Scholar

[17] Cahoon N C. The influence of hydrogen ion concentration on the potential of african manganese dioxide[J]. Transactions of the electrochemical society, 1935, 68(1), 177-185.

DOI: 10.1149/1.3493866

Google Scholar

[18] Johnson R. S., and Vosburgh W. C. The reproducibility of the manganese dioxide electrode and the change of electrode potential with pH[J]. Journal of the electrochemical society, 1952, 99(8), 317-322.

DOI: 10.1149/1.2779743

Google Scholar

[19] Wei J., Fan L., Dong R.Z., et al. A kind of reference electrode: CN102175734, (2013).

Google Scholar