Study on a Novel Tunable Piezoelectric Energy Harvesting Structure

Article Preview

Abstract:

This research proposes a novel piezoelectric harvester structure which is constructed by a cantilever base beam and piezoelectric elements bonded with the base beam in a certain manner. By changing the electrical boundary conditions of the piezoelectric elements, the resonant frequency of the beam structure changes accordingly. Two kinds of manners in which piezoelectric elements are bonded with the beam are investigated and compared with ANSYS simulations and experiments. The results showed that the embedded manner surpasses the surface-bonded manner with the frequency variation ratio of 3.17%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

515-519

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hande A, Bridgelall R, Zoghi B. Vibration energy harvesting for disaster asset monitoring using active RFID tags. Proc IEEE, 2010, 98(9): 1620-1628.

DOI: 10.1109/jproc.2010.2050670

Google Scholar

[2] Rocha J G, Gonçalves L M, Rocha P F, Silva M P, and Lanceros-Méndez S. Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE T Ind Electron, 2010, 57(3): 813-819.

DOI: 10.1109/tie.2009.2028360

Google Scholar

[3] Renaud M, Fiorini P, Schaijk R, Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator. Smart Mater Struct, 2009, 18: 035001.

DOI: 10.1088/0964-1726/18/3/035001

Google Scholar

[4] Wischke M, Masur M, Kroner M, and Woias P. Vibration harvesting in traffic tunnels to power wireless sensor nodes. Smart Mater Struct, 2011, 20: 085014.

DOI: 10.1088/0964-1726/20/8/085014

Google Scholar

[5] Gao X, Shih W H, and Shih W Y. Flow energy harvesting using piezoelectric cantilevers with cylindrical extension. IEEE T Ind Electron, 2013, 60(3): 1116-1118.

DOI: 10.1109/tie.2012.2187413

Google Scholar

[6] Wang W, Yang T, Chen X, and Yao X. Vibration energy harvesting using a piezoelectric circular diaphragm array. IEEE Trans Ultrason Ferroelectr Freq Control, 2012, 59(9): 2022-(2026).

DOI: 10.1109/tuffc.2012.2422

Google Scholar

[7] Tang Q, Yang Y, Li X. Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion. Smart Mater Struct, 2011, 20: 125011.

DOI: 10.1088/0964-1726/20/12/125011

Google Scholar

[8] Yuan J, Xie T, Chen W, Shan X, and Jiang S. Performance of a drum transducer for scavenging vibration energy. J Intell Mater Syst Struct, 2009, 20: 1771-1777.

DOI: 10.1177/1045389x09343477

Google Scholar

[9] GUAN M J, Liao W H. On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages. Smart Mater Struct, 2007, 16: 498-505.

DOI: 10.1088/0964-1726/16/2/031

Google Scholar

[10] GUAN M J, Liao W H. Characteristics of energy storage devices in piezoelectric energy harvesting systems. J Intell Mater Syst Struct, 2008, 19(6): 671-680.

DOI: 10.1177/1045389x07078969

Google Scholar

[11] Castagnetti D. A wideband fractal-inspired piezoelectric energy converter: design, simulation and experimental characterization. Smart Mater Struct, 2013, 22(9): 094024.

DOI: 10.1088/0964-1726/22/9/094024

Google Scholar

[12] Lallart M, Wu Y C, Richard C, Guyomar D and Halvorsen E. Broadband modeling of a nonlinear technique for energy harvesting. Smart Mater Struct, 2012, 21(11): 115006.

DOI: 10.1088/0964-1726/21/11/115006

Google Scholar

[13] Luo C, Hofmann H F. Wideband energy harvesting for piezoelectric devices with linear resonant behavior. IEEE Trans Ultrason Ferroelectr Freq Control, 2011, 58(7): 1294-1301.

DOI: 10.1109/tuffc.2011.1949

Google Scholar

[14] Lallart M, Anton S R, Inman D J. Frequency self-tuning scheme for broadband vibration energy harvesting. J Intell Mater Syst Struct, 2010, 21: 897-906.

DOI: 10.1177/1045389x10369716

Google Scholar

[15] Challa V R, Prasad M G, Fisher F T. Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications. Smart Mater Struct, 2011, 20: 025004.

DOI: 10.1088/0964-1726/20/2/025004

Google Scholar

[16] Zhu D, Tudor M J, Beeby S P. Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol, 2010, 21: 022001.

DOI: 10.1088/0957-0233/21/2/022001

Google Scholar

[17] Larson G D, Cunefare K A. Quarter-cycle switching control for switch-shunted dampers. J Vib Acoust,2004, 126(2): 278-283.

DOI: 10.1115/1.1687394

Google Scholar

[18] Liao W H , Wang K W. Characteristics of enhanced active constrained layer damping treatments with edge elements, Part 1: Finite element model development and validation. J Vib Acoust, 1998, 120(4): 886-893.

DOI: 10.1115/1.2893916

Google Scholar

[19] Guan M J , Liao W H. On the equivalent circuit models of piezoelectric ceramics. Ferroelectrics. 2009, 386(1): 77-87.

DOI: 10.1080/00150190902961439

Google Scholar