[1]
Hande A, Bridgelall R, Zoghi B. Vibration energy harvesting for disaster asset monitoring using active RFID tags. Proc IEEE, 2010, 98(9): 1620-1628.
DOI: 10.1109/jproc.2010.2050670
Google Scholar
[2]
Rocha J G, Gonçalves L M, Rocha P F, Silva M P, and Lanceros-Méndez S. Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE T Ind Electron, 2010, 57(3): 813-819.
DOI: 10.1109/tie.2009.2028360
Google Scholar
[3]
Renaud M, Fiorini P, Schaijk R, Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator. Smart Mater Struct, 2009, 18: 035001.
DOI: 10.1088/0964-1726/18/3/035001
Google Scholar
[4]
Wischke M, Masur M, Kroner M, and Woias P. Vibration harvesting in traffic tunnels to power wireless sensor nodes. Smart Mater Struct, 2011, 20: 085014.
DOI: 10.1088/0964-1726/20/8/085014
Google Scholar
[5]
Gao X, Shih W H, and Shih W Y. Flow energy harvesting using piezoelectric cantilevers with cylindrical extension. IEEE T Ind Electron, 2013, 60(3): 1116-1118.
DOI: 10.1109/tie.2012.2187413
Google Scholar
[6]
Wang W, Yang T, Chen X, and Yao X. Vibration energy harvesting using a piezoelectric circular diaphragm array. IEEE Trans Ultrason Ferroelectr Freq Control, 2012, 59(9): 2022-(2026).
DOI: 10.1109/tuffc.2012.2422
Google Scholar
[7]
Tang Q, Yang Y, Li X. Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion. Smart Mater Struct, 2011, 20: 125011.
DOI: 10.1088/0964-1726/20/12/125011
Google Scholar
[8]
Yuan J, Xie T, Chen W, Shan X, and Jiang S. Performance of a drum transducer for scavenging vibration energy. J Intell Mater Syst Struct, 2009, 20: 1771-1777.
DOI: 10.1177/1045389x09343477
Google Scholar
[9]
GUAN M J, Liao W H. On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages. Smart Mater Struct, 2007, 16: 498-505.
DOI: 10.1088/0964-1726/16/2/031
Google Scholar
[10]
GUAN M J, Liao W H. Characteristics of energy storage devices in piezoelectric energy harvesting systems. J Intell Mater Syst Struct, 2008, 19(6): 671-680.
DOI: 10.1177/1045389x07078969
Google Scholar
[11]
Castagnetti D. A wideband fractal-inspired piezoelectric energy converter: design, simulation and experimental characterization. Smart Mater Struct, 2013, 22(9): 094024.
DOI: 10.1088/0964-1726/22/9/094024
Google Scholar
[12]
Lallart M, Wu Y C, Richard C, Guyomar D and Halvorsen E. Broadband modeling of a nonlinear technique for energy harvesting. Smart Mater Struct, 2012, 21(11): 115006.
DOI: 10.1088/0964-1726/21/11/115006
Google Scholar
[13]
Luo C, Hofmann H F. Wideband energy harvesting for piezoelectric devices with linear resonant behavior. IEEE Trans Ultrason Ferroelectr Freq Control, 2011, 58(7): 1294-1301.
DOI: 10.1109/tuffc.2011.1949
Google Scholar
[14]
Lallart M, Anton S R, Inman D J. Frequency self-tuning scheme for broadband vibration energy harvesting. J Intell Mater Syst Struct, 2010, 21: 897-906.
DOI: 10.1177/1045389x10369716
Google Scholar
[15]
Challa V R, Prasad M G, Fisher F T. Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications. Smart Mater Struct, 2011, 20: 025004.
DOI: 10.1088/0964-1726/20/2/025004
Google Scholar
[16]
Zhu D, Tudor M J, Beeby S P. Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol, 2010, 21: 022001.
DOI: 10.1088/0957-0233/21/2/022001
Google Scholar
[17]
Larson G D, Cunefare K A. Quarter-cycle switching control for switch-shunted dampers. J Vib Acoust,2004, 126(2): 278-283.
DOI: 10.1115/1.1687394
Google Scholar
[18]
Liao W H , Wang K W. Characteristics of enhanced active constrained layer damping treatments with edge elements, Part 1: Finite element model development and validation. J Vib Acoust, 1998, 120(4): 886-893.
DOI: 10.1115/1.2893916
Google Scholar
[19]
Guan M J , Liao W H. On the equivalent circuit models of piezoelectric ceramics. Ferroelectrics. 2009, 386(1): 77-87.
DOI: 10.1080/00150190902961439
Google Scholar