Application of Artificial Neural Networks for Diagnosing Acute Appendicitis

Article Preview

Abstract:

The purpose of this study is to develop an appendicitis diagnosis system, by using artificial neural networks (ANNs). Acute appendicitis is one of the most common surgical emergencies of the abdomen. Various methods have been developed to diagnose appendicitis, but these methods have not shown good performance in the Middle East and Asia, or even in the West. We used the structures of ANNs with 801 patients. These various structures are a multilayer neural network structure (MLNN), a radial basis function neural network structure (RBF), and a probabilistic neural network structure (PNN). The Alvarado clinical scoring system was used for comparison with the ANNs. The accuracy of MLNN, RBF, PNN, and Alvarado was 97.84%, 99.80%, 99.41% and 72.19%, respectively. The AUC of MLNN, RBF, PNN, and Alvarado was 0.985, 0.998, 0.993, and 0.633, respectively. The performance of ANNs was significantly better than the Alvarado clinical scoring system (P<0.001). The models developed to diagnose appendicitis using ANNs showed good performance. We consider that the developed models can help junior clinical surgeons diagnose appendicitis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

445-450

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Chong, M. Adi, A. Thien, A. Suyoi, A. Mackie, A. Tin, S. Tripathi, N. Jaman, K. Tan, K. Kok, V. Mathew, O. Paw, H. Chua, and S. Yapp: Singapore Med J. Vol. 51 (2010), p.220.

Google Scholar

[2] H. Lintula, H. Kokki, R. Kettunen, and M. Eskelinen: Langenbecks Arch. Surg. Vol. 394 (2009), p.999.

DOI: 10.1007/s00423-008-0425-0

Google Scholar

[3] H. Lintula, H. Kokki, J. Pulkkinen, R. Kettunen, O. Gröhn, and M. Eskelinen: Langenbecks Arch. Surg. Vol. 395 (2010), p.495.

DOI: 10.1007/s00423-010-0627-0

Google Scholar

[4] D. Flum, and T. Koepsell: Arch. Surg. Vol. 137 (2002), p.799.

Google Scholar

[5] A. Alvarado: Ann. Emerg. Med. Vol. 15 (1986), p.557.

Google Scholar

[6] E. Paulson, and C. Coursey: Am. J. Roentgenol. Vol. 193 (2009), p.1268.

Google Scholar

[7] P. Poortman, P. N. Lohle, C. M. Schoemaker, M. A. Cuesta, H. J. Oostvogel, E. S. de Lange-de Klerk, and J. F. Hamming: Eur. J. Radiol. Vol. 74 (2010), p.67.

DOI: 10.1016/j.ejrad.2008.12.012

Google Scholar

[8] G. M. Israel, N. Malguria, S. McCarthy, J. Copel, and J. Weinreb: J. Magn. Reson. Imaging Vol. 28 (2008), p.428.

DOI: 10.1002/jmri.21456

Google Scholar

[9] J. Hawkins, and R. Thirlby: Adv. Surg. Vol. 43 (2009), p.13.

Google Scholar

[10] M. Kalan, D. Talbot, W. Cunliffe, and A. Rich: Ann. R. Coll. Surg. Engl. Vol. 76 (1994), p.418.

Google Scholar

[11] C. H. Hsieh, R. H. Lu, N. H. Lee, W. T. Chiu, M. H. Hsu, and Y. C. Li: Surgery Vol. 149 (2011), p.87.

Google Scholar

[12] A. Konan, M. Hayran, and Y. A. Kilic: Ulus. Travma. Acil. Cerrahi. Derg. Vol. 17 (2011), p.396.

DOI: 10.5505/tjtes.2011.03780

Google Scholar

[13] H. John, U. Neff, and M. Kelemen: World J. Surg. Vol. 17 (1993), p.243.

Google Scholar

[14] Z. H. Zhou, Y. Jiang, Y. B. Yang, and S. F. Chen: Artif. Intell. Med. Vol. 24 (2002), p.25.

Google Scholar

[15] F. Temurtas: Expert Syst. Appl. Vol. 36 (2009), p.944.

Google Scholar

[16] D. Delen, G. Walker, and A. Kadam: Artif Intell Med Vol. 34 (2005), p.113.

Google Scholar

[17] D. Wu, K. Warwick, Z. Ma, M. Gasson, J. Burgess, S. Pan, and T. Aziz: Int. J. Neural Syst. Vol. 20 (2010), p.109.

Google Scholar

[18] D. E. Rumelhart, and J. L. McClelland, in: Learning internal representations by error propagation, edited by J.A. Feldman, P.J. Hayes, and D.E. Rumelhart Publications/MIT Press, Cambridge (1988).

Google Scholar

[19] S. Sakai, K. Kobayashi, J. Nakamura, S. Toyabe, and K. Akazawa: Methods Inf. Med. Vol. 46 (2007), p.723.

Google Scholar

[20] S. Prabhudesai, S. Gould, S. Rekhraj, P. Tekkis, G. Glazer, and P. Ziprin: World J. Surg. Vol. 32 (2008), p.305.

DOI: 10.1007/s00268-007-9298-6

Google Scholar