Time-Frequency Bands of Electromagnetic Wave from ERPCOH on Developmental Changes

Article Preview

Abstract:

Recent changes in ongoing background activity are one of the most popular approaches to investigate brain activity for understanding child development. However, research using event-related responses of cortico-cortical connections to explore changes during childhood is rare. This study investigates mature changes in brain connectivity in associative reorganization patterns and hypothesizes that age-related changes affect oscillatory connections. The sample included children aged 7 years, 11 years, and adults. The 3 groups were studied in the time-frequency domain to analyze event-related cross phase coherence (ERPCOH) between different parts of the brain as they performed an auditory oddball task. Compared to the adult participants, the 11-year-old participants were found to have increased connectivity in theta (4-7 Hz), beta-2 (20-30 Hz), and gamma bands (30-50 Hz) in the early component (N1, 80-140 ms), although ERPCOH value decreased in the alpha-1 (7-10 Hz) and alpha-2 bands (10-13 Hz). Compared to the 11-year-old participants, 7-year-old participants had greater connectivity decreases in all frequency bands, most significantly in theta, beta-2, and gamma bands.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

517-523

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Ornitz, Developmental aspects of neurophysiology, Child and adolescent psychiatry: A comprehensive textbook (1996) 39-51.

Google Scholar

[2] M.C. Ho, C.Y. Chou, C.F. Huang, Y.T. Lin, C.S. Shih, S.Y. Han, M.H. Shen, T.C. Chen, C. Liang, M.C. Lu, C.J. Liu: Neuroscience Letters 507 (2012) 78-83.

Google Scholar

[3] J.J. Eggermont, and C. W: Acta Oto-Laryngologica 123 (2003) 249-252.

Google Scholar

[4] W. Klimesch, P. Sauseng, S. Hanslmayr, W. Gruber, and R. Freunberger: Neuroscience and Biobehavioral Reviews 31 (2007) 1003-1016.

DOI: 10.1016/j.neubiorev.2007.03.005

Google Scholar

[5] Z.A. Gaál, R. Boha, C.J. Stam, M. Molnár: Neuroscience Letters 479 (2010) 79-84.

DOI: 10.1016/j.neulet.2010.05.037

Google Scholar

[6] J. Yordanova, V. Kolev: Journal of Psychophysiology 23 (2009) 174-182.

Google Scholar

[7] S.A. Hillyard, R.F. Hink, V.L. Schwent, T.W. Picton: Science 182 (1973) 177-180.

DOI: 10.1126/science.182.4108.177

Google Scholar

[8] R. Naatanen, T. Picton: Psychophysiology 24 (1987) 375-425.

Google Scholar

[9] C. Başar-Eroglu, E. Başar, T. Demiralp, M. Schurmann: International Journal of Psychophysiology 13 (1992) 161-179.

DOI: 10.1016/0167-8760(92)90055-g

Google Scholar

[10] A. Delorme, S. Makeig: Journal of Neuroscience Methods 134 (2004) 9-21.

Google Scholar

[11] S. Makeig, S. Debener, J. Onton, A. Delorme: Trends in Cognitive Sciences 8 (2004) 204-210.

DOI: 10.1016/j.tics.2004.03.008

Google Scholar

[12] O. David, L. Harrison, K.J. Friston: Neuroimage 25 (2005) 756-770.

Google Scholar

[13] B. Güntekin, E. Başar: Cognitive Neurodynamics 4 (2010) 107-118.

Google Scholar

[14] S.J. Johnstone, R.J. Barry, J.W. Anderson, S.F. Coyle: International Journal of Psychophysiology 24 (1996) 223-238.

Google Scholar

[15] V. Mueller, Y. Brehmer, T. von Oertzen, S. -C. Li, U. Lindenberger: BMC Neuroscience 9 (2008) 18.

Google Scholar

[16] A. Toga, P. Thompson, E. Sowell: Trends in Neurosciences 29 (2006) 148-159.

Google Scholar

[17] P.E. Engelhardt, Ş. Barış Demiral, F. Ferreira: Brain and Cognition 77 (2011) 304-314.

DOI: 10.1016/j.bandc.2011.07.004

Google Scholar

[18] R. Cabeza, N.D. Anderson, J.K. Locantore, A.R. McIntosh: Neuroimage 17 (2002) 1394-1402.

Google Scholar

[19] P. Sauseng, J. Hoppe, W. Klimesch, C. Gerloff, F. C: European Journal of Neuroscience 25 (2007) 587-593.

Google Scholar

[20] E. Rodriquez, H. George, J. Lanchaux, J. Martinerie, B. Renault, F. Varela: Nature 397 (1999) 430-433.

Google Scholar