In-Plane Electromagnetic Generator Fabricated on Printed Circuit Board Technology

Article Preview

Abstract:

Small and efficient energy harvesters, as a renewable power supply, draw lots of attention in the last few years. This paper presents a planar rotary electromagnetic generator with copper coils fabricated by using printed circuit board (PCB) as inductance and Nd-Fe-B magnets as magnetic element. Coils are fabricated on PCB, which is presumably cost-effective and promising methods. 28-pole Nd-Fe-B magnets with outer diameter of 50 mm and thickness of 2 mm was sintered and magnetized, which can provide magnetic field of 1.44 Tesla. This harvester consists of planar multilayer with multi-pole coils and multi-pole permanent magnet, and the volume of this harvester is about 50x50x2.5 mm3. Finite element analysis is used to design energy harvesting system, and simulation model of the energy harvester is established. In order to verify the simulation, experiment data are compared with simulation result. The PCB energy harvester prototype can generate induced voltage 0.61 V and 13.29mW output power at rotary speed of 4,000 rpm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

524-529

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.D. Mitcheson, E.K. Reilly, T. Toh, P.K. Wright, E.M. Yeatman, Performance limits of the three MEMS inertial energy generator transduction types, Journal of Micromechanics and Microengineering, 17 (2007) 211-217.

DOI: 10.1088/0960-1317/17/9/s01

Google Scholar

[2] D.P. Arnold, F. Herrault, I. Zana, P. Galle1, J.W. Park, S. Das, J.H. Lang, M.G. Allen, Design optimization of an 8W, microscale, axial-flux, permanent-magnet generator, Journal of Micromechanics and Microengineering. 16 (2006) 290-297.

DOI: 10.1088/0960-1317/16/9/s17

Google Scholar

[3] S. Kulkarni, S. Roy, T. O'Donnell, S. Beeby, J. Tudor, Vibration based electromagnetic micropower generator on silicon, Journal of Applied Physics. 99 (2006) 511-513.

DOI: 10.1063/1.2176089

Google Scholar

[4] S. Kulkarni, E. Koukharenko, R. Torah, J. Tudor, S. Beeby, T. O'Donnell, S. Roy, Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator, Sensors and Actuators A: Physical. 145 (2008) 336-342.

DOI: 10.1016/j.sna.2007.09.014

Google Scholar

[5] P.H. Wang, X.H. Dai, D.M. Fang, X.L. Zhao, Design, fabrication and performance of a new vibration-based electromagnetic micro power generator, Microelectronics Journal. 38 (2007) 1175-1180.

DOI: 10.1016/j.mejo.2007.10.002

Google Scholar

[6] P.H. Wang, H.T. Liu, X.H. Dai, Z.Q. Yang, Z.Z. Wang, X.L. Zhao, Design, simulation, fabrication and characterization of a micro electromagnetic vibration energy harvester with sandwiched structure and air channel, Microelectronics Journal. 43 (2012).

DOI: 10.1016/j.mejo.2011.10.003

Google Scholar

[7] I. Sari, T. Balkan, H. Kulah, An electromagnetic micro power generator for wideband environmental vibrations, Sensors and Actuators A: Physical. 145 (2008) 405-413.

DOI: 10.1016/j.sna.2007.11.021

Google Scholar

[8] C. Serre, A. Perez-Rodrıguez, N. Fondevilla, E. Martincic, S. Martınez, J.R. Morante, J. Montserrat, J. Esteve, Design and implementation of mechanical resonators for optimized inertial electromagnetic microgenerators, Microsyst Technol. 14 (2007).

DOI: 10.1007/s00542-007-0494-y

Google Scholar

[9] C. Serre, A. Perez-Rodrıguez, N. Fondevilla, J.R. Morante, J. Montserrat, J. Esteve, Linear and non-linear behavior of mechanical resonators for optimized inertial electromagnetic microgenerators, Microsyst Technol. 13 (2007) 1655-1661.

DOI: 10.1007/s00542-009-0825-2

Google Scholar

[10] J. Yang, Y.M. Wen, P. Li, X.Z. Dai, A magnetoelectric, broadband vibration-powered generator for intelligent sensor systems, Sensors and Actuators A: Physical. 168 (2011) 358-364.

DOI: 10.1016/j.sna.2011.04.038

Google Scholar

[11] C.T. Pan, T.T. Wu, Simulation and fabrication of magnetic rotary microgenerator with multipolar Nd/Fe/B magnet, Microelectronics Reliability. 47 (2007) 2129-2134.

DOI: 10.1016/j.microrel.2006.09.037

Google Scholar

[12] C.T. Pan, Y.J. Chen, Application of low temperature co-fire ceramics on in-plane micro-generator, Sensors and Actuators A: Physical. 144 (2008) 144-153.

DOI: 10.1016/j.sna.2007.12.008

Google Scholar

[13] C.T. Pan, Y.J. Chen, S.C. Shen, Simulation and analysis of electromagnetic in-plane microgenerator, Journal of Micro-Nanolithography MEMS and MOEMS. 8 (2009) 031304.

DOI: 10.1117/1.3152363

Google Scholar

[14] A.S. Holmes, G. Hong, K.R. Pullen, Axial-Flux Permanent Magnet Machines for Micropower Generation, Journal of Microelectromechanical System. 14 (2005) 54-62.

DOI: 10.1109/jmems.2004.839016

Google Scholar

[15] S.M. Hosseini, M.A. Mirsalim, M. Mirzaeil, Design, Prototyping, and analysis of a low cost axial-flux coreless permanent-magnet generator, Transations on Magnets. 44 (2008) 75-80.

DOI: 10.1109/tmag.2007.909563

Google Scholar