[1]
Nakaoka, S., Nakazawa, A., Kanehiro, F., Kaneko, K., Morisawa, M., & Ikeuchi, K. (2005, August). Task model of lower body motion for a biped humanoid robot to imitate human dances. In Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on (pp.3157-3162.
DOI: 10.1109/iros.2005.1545395
Google Scholar
[2]
Pollard, N. S., Hodgins, J. K., Riley, M. J., & Atkeson, C. G. (2002). Adapting human motion for the control of a humanoid robot. In Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on (Vol. 2, pp.1390-1397).
DOI: 10.1109/robot.2002.1014737
Google Scholar
[3]
Miura, K., Morisawa, M., Nakaoka, S. I., Kanehiro, F., Harada, K., Kaneko, K., & Kajita, S. (2009, December). Robot motion remix based on motion capture data towards human-like locomotion of humanoid robots. In Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS International Conference on (pp.596-603.
DOI: 10.1109/ichr.2009.5379535
Google Scholar
[4]
Kim, C., Kim, D., & Oh, Y. (2006). Adaptation of human motion capture data to humanoid robots for motion imitation using optimization. Integrated computer-aided engineering, 13(4), 377-389.
DOI: 10.3233/ica-2006-13406
Google Scholar
[5]
A. Billard, S. Callinon, R. Dillmann, and S. Schaal, Robot programming by demonstration, in Handbook of Robotics, B. Siciliano, O. Khatib, Eds. New York: Springer, 2008, ch. 59, pp.1371-1389.
DOI: 10.1007/978-3-540-30301-5_60
Google Scholar
[6]
S. Calinon and A. Billard, A probabilistic programming by demonstration framework handling skill constraints in joint space and task space, in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, (2008).
DOI: 10.1109/iros.2008.4650593
Google Scholar
[7]
Cho, S., & Jo, S. (2012). Incremental motion learning through kinesthetic teachings and new motion production from learned motions by a humanoid robot. International Journal of Control, Automation and Systems, 10(1), 126-135.
DOI: 10.1007/s12555-012-0114-1
Google Scholar
[8]
Hersch, M., Guenter, F., Calinon, S., & Billard, A. (2008). Dynamical system modulation for robot learning via kinesthetic demonstrations. Robotics, IEEE Transactions on, 24(6), 1463-1467.
DOI: 10.1109/tro.2008.2006703
Google Scholar
[9]
M. Hersch, F. Guenter, S. Calinon, and A. G. Billard, Learning dynamical system modulation for constrained reaching tasks, in IEEE Int. Conf. Humanoid Robot., 2006, p.444–449.
DOI: 10.1109/ichr.2006.321310
Google Scholar
[10]
Liu, J., & Veloso, M. (2008, September). Online ZMP sampling search for biped walking planning. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on (pp.185-190).
DOI: 10.1109/iros.2008.4651017
Google Scholar
[11]
Erbatur, K., Okazaki, A., Obiya, K., Takahashi, T., & Kawamura, A. (2002). A study on the zero moment point measurement for biped walking robots. InAdvanced Motion Control, 2002. 7th International Workshop on (pp.431-436).
DOI: 10.1109/amc.2002.1026959
Google Scholar
[12]
Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003, September). Biped walking pattern generation by using preview control of zero-moment point. In Robotics and Automation, 2003. Proceedings. ICRA'03. IEEE International Conference on (Vol. 2, pp.1620-1626.
DOI: 10.1109/robot.2003.1241826
Google Scholar
[13]
Sardain, P., & Bessonnet, G. (2004). Forces acting on a biped robot. center of pressure-zero moment point. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 34(5), 630-663.
DOI: 10.1109/tsmca.2004.832811
Google Scholar