[1]
Dempster A. Upper and lower probabilities induced by multi-valued mapping. Annals of Mathematical Statistics, 1967, 38(2): 325–339.
DOI: 10.1214/aoms/1177698950
Google Scholar
[2]
M.V. Mahoney and P.K. Chan. PHAD: Packet Header Anomaly Detection for Identifying Hostile Network Traffic. Technical Report, CS-2001-4, Melbourne: Department of Computer Science, Florida Institute of Technology, (2001).
Google Scholar
[3]
M.V. Mahoney and P.K. Chan. Learning Nonstationary Models of Normal Network Traffic for Detecting Novel Attacks. In: Proc. of the Eighth international conference on Knowledge discovery and data mining. Edmonton: ACM, 2002. 376–385.
DOI: 10.1145/775047.775102
Google Scholar
[4]
L. E,E. Eilertson, A. Lazarevic, et al. The MINDS-Minnesota Intrusion Detection System. Boston: MIT Press, (2004).
Google Scholar
[5]
P.A. Porras and P.G. Neumann. EMERALD: Event Monitoring Enabling Responses to Anomalous Live Disturbances. In: Proc. of the 20th National Information Systems Security Conference. Baltimore, 1997. 353–365.
Google Scholar
[6]
R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, et al. The 1999 DARPA off-line intrusion detection evaluation. Computer Networks: The International Journal of Computer and Telecommunications Networking, 2000, 34(4): 579–595.
DOI: 10.1016/s1389-1286(00)00139-0
Google Scholar
[7]
N. E. Huang, Z. Shen, S. R. Long, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proc. of the Royal Society of London, 1998, A454: 903-995.
DOI: 10.1098/rspa.1998.0193
Google Scholar
[8]
ZHUGE Jian-Wei, WANG Da-Wei, CHEN Yu, et al. A Network Anomaly Detector Based on the D-S Evidence Theory. Journal of Software, 2006, 17(3): 463−471. http: /www. jos. org. cn/1000-9825/17/463. htm.
DOI: 10.1360/jos170463
Google Scholar
[9]
A. Lakhina, M. Crovella, and C. Diot. Diagnosing Network-Wide Traffic Anomalies. In: Proc. of ACM SIGCOMM. Portland: ACM, (2004).
DOI: 10.1145/1030194.1015492
Google Scholar