Electron Beam Lithography for Fabrication of Nanophase-Change Memory

Article Preview

Abstract:

In this work, we report two methods to fabricate the nanophase-change memory: (1) electron beam lithography (EBL) using the positive resist ZEP-520A followed by phase change material deposition and lift-off processes, (2) EBL using the negative resist hydrogen silsesquioxane (HSQ) followed by reactive ion etching (RIE) after phase change material deposition. For the former method, the optimized exposure dosage is around 40 μC/cm2 and the finest nanowire is about 80 nm in width. On the other hand, the latter method shows that the finest nanowire can be as small as about 15 nm in width after RIE process and the optimized exposure dosage is around 2.0 mC/cm2. In this case, collapse-preventing pattern becomes necessary for fabrication of such a fine nanowire.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-35

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Lai: Tech. Dig. IEDM (2003), p.255.

Google Scholar

[2] Y. Yin, D. Niida, K. Ota, H. Sone and S. Hosaka: Rev. Sci. Instrum. Vol. 78 (2007), p.126101.

Google Scholar

[3] H. Y. Cheng, Y. C. Chen, R. J. Chung and T. S Chin: Semicond. Sci. Technol. Vol. 21 (2006), p.1196.

Google Scholar

[4] Y. Yin, T. Noguchi and S. Hosaka: Jpn. J. Appl. Phys. Vol. 50 (2011), p.105201.

Google Scholar

[5] A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer and R. Bez: IEEE Trans. Electron Devices Vol. 51 (2004), p.452.

DOI: 10.1109/ted.2003.823243

Google Scholar

[6] G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp and M. Kun: Appl. Phys. Lett. Vol. 95 (2009), p.043108.

DOI: 10.1063/1.3191670

Google Scholar

[7] Y. Yin, H. Sone and S. Hosaka: Microelectron. Eng. Vol. 84 (2007), p.2901.

Google Scholar

[8] Y. Yin and S. Hosaka, Appl. Phys. Lett. Vol. 100 (2012), p.253503.

Google Scholar

[9] D. H. Kang, D. H. Ahn, K. B. Kim, J. F. Webb and K. W. Yi: J. Appl. Phys. Vol. 94 (2003), p.3536.

Google Scholar

[10] Y. Yin, H. Sone and S. Hosaka: Jpn. J. Appl. Phys. Vol. 51 (2012), p.104202.

Google Scholar

[11] Y. H. Ha, J. H. Yi, H. Horii, J. H. Park, S. H. Joo, S. O. Park, U. I. Chung, J. T. Moon: Symp. VLSI Tech. Dig. Tech. Pap. (2003), p.175.

Google Scholar

[12] J. Shen, B. Liu, Z. Song, C. Xu, F. Rao, S. Liang, S. Feng and B. Chen: Applied Physics Express Vol. 1 (2008), p.011201.

Google Scholar

[13] Y. Yin, H. Sone and S. Hosaka: Jpn. J. Appl. Phys. Vol. 44 (2005), p.6208.

Google Scholar

[14] T. H. Jeong, M. R. Kim, H. Seo, J. W. Park and C. Yeon: Jpn. J. Appl. Phys. Vol. 39 (2000), p.2775.

Google Scholar

[15] S. M. Kim, J. H. Jun, D. J. Choi, S. K. Hong and Y. J. Park: Jpn. J. Appl. Phys. Vol. 44 (2005), p. L208.

Google Scholar

[16] Y. Matsubara, J. Taniguchi and I. Miyamoto: Jpn. J. Appl. Phys. Vol. 45 (2006), p.5538.

Google Scholar

[17] K. Liu, P. Avouris, J. Bucchignano, R. Martel, S. Sun, and J. Michl: Appl. Phys. Lett. Vol. 80 (2002), p.865.

DOI: 10.1063/1.1436275

Google Scholar

[18] S. Hosaka, Z. Mohamad, M. Shirai, H. Sano, Y. Yin, A. Miyachi, and H. Sone: Appl. Phys. Express, Vol. 1 (2008), p.027003.

Google Scholar

[19] T. Komori, H. Zhang, T. Akahane, Z. Mohamad, Y. Yin, and S. Hosaka: Jpn. J. Appl. Phys., Vol. 51 (2012), p. 06FB02.

Google Scholar

[20] A.A.G. Driskill-Smith, J.A. Katine, D.P. Druist, K.Y. Lee, R.C. Tiberio, A. Chiu: Microelectron. Eng. Vol. 73–74 (2004), p.547.

Google Scholar