A Three-Dimensional Numerical Analysis on the Effective Permittivity of Composites Including Ellipsoids

Article Preview

Abstract:

To investigate the effective permittivity of composites composed of ellipsoidal inclusions, three-dimension numerical models for ellipsoidal inclusions distributed randomly are built with the finite-element modeling software Comsol Multiphysics. After calculating the effective permittivity for different cases and comparing the results with analytical results from the Maxwell-Garnett mixing rule, we find that the finite-element method has an advantage in detecting details of the interaction among inclusions, which have some impacts on the effective permittivity and could not be accurately taken into account in the analytical model. The finite-element method is expected to solve more complex problems on electromagnetic computation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-27

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M. Garnett, Colors in metal glasses and metal films, Transactions of the Royal Society, London, 1904, pp.385-420.

Google Scholar

[2] D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen.I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Annalen der Physik 416 (1935) 636-664.

DOI: 10.1002/andp.19354160705

Google Scholar

[3] A.H. Sihvola, J.A. Kong, Effective Permittivity of Dielectric Mixtures, IEEE T. Geosci. Remote 26 (1988) 420-429.

DOI: 10.1109/36.3045

Google Scholar

[4] O. Levy, D. Stroud, Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers, Phys. Rev. B 56(1997) 8035-8046.

DOI: 10.1103/physrevb.56.8035

Google Scholar

[5] B. Drnovšek, V.B. Bregar, M. Pavlin, The effect of complex permeability and agglomeration on composite magnetic systems: A three-dimensional numerical analysis and comparison with analytical models, J. Appl. Phys. 103 (2008) 07D924.

DOI: 10.1063/1.2839580

Google Scholar

[6] I. Krakovsky, V. Myroshnychenko, Modeling dielectric properties of composites by finite-element method, J. Appl. Phys. 92 (2002) 6743-6748.

DOI: 10.1063/1.1516837

Google Scholar

[7] V. Myroshnychenko, C. Brosseau, Finite-element method for calculation of the effective permittivity of random inhomogeneous media, Phys. Rev. E 71 (2005) 016701.

DOI: 10.1103/physreve.71.016701

Google Scholar

[8] Y.B. Sun, J.C. Han, Y.M. Zhang, Relative dielectric constant calculation model for three-phase porous composite materials, Comp. Mater. Sci. 45 (2009) 1125-1128.

DOI: 10.1016/j.commatsci.2009.01.012

Google Scholar

[9] S.B. Jones, S.P. Friedman, Particle shape effects on the effective permittivity of anisotropicor isotropic media consisting of aligned or randomly oriented ellipsoidal particles, Water Resour. Res. 36 (2000) 2821-2833.

DOI: 10.1029/2000wr900198

Google Scholar

[10] C. Brosseau, A. Beroual, A. Boudida, How do shape anisotropy and spatial orientation of the constituents affect the permittivity of dielectric heterostructures, J. Appl. Phys. 88 (2000) 7278-7288.

DOI: 10.1063/1.1321779

Google Scholar

[11] S. Giordano, Effective medium theory for dispersions of dielectric ellipsoids, J. Electrostat. 58 (2003) 59-76.

DOI: 10.1016/s0304-3886(02)00199-7

Google Scholar