Numerical Simulation of High Speed Single-Grain Cutting Using a Coupled FE-SPH Approach

Article Preview

Abstract:

In this study, to simulate the grinding process for rolled homogeneous armor steel (RHA) 4043, a single-grain cutting process is modeled using a three-dimensional (3-D) numerical model, which is developed using a coupled finite element (FE) - smoothed-particle hydrodynamics (SPH) approach. The proposed numerical model is then employed to investigate the influences of grain negative rake angle (-22°, -31°, and-45°) as well as high and super-high cutting speed ranged from 100 m/s to 260 m/s in the cutting processes. The numerical results show the cutting forces are much lower and the maximum chip thickness is much larger when using a smaller grain negative rake angle.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Brinksmeier, J.C. Aurich, E. Govekar, C. Heinzel, H. -W. Hoffmeister, J. Peters, R. Rentsch, D.J. Stephenson, E. Uhlmann, K. Weinert and M. Wittmann: CIRP Annals-Manufacturing Technology  55(2) (2006), pp.667-696.

DOI: 10.1016/j.cirp.2006.10.003

Google Scholar

[2] C. Su, J. Hou, L. Zhu, and W. Wang: Journal of System Simulation 19 (2008): 045, pp.5250-5253.

Google Scholar

[3] D.A. Doman, R. Bauer, and A. Warkentin: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 223(12) (2009), pp.1519-1527.

DOI: 10.1243/09544054jem1520

Google Scholar

[4] T.T. Öpöz, X. Chen: Proceedings of the 8th International Conference on Manufacturing Research, 14-16 Sept 2010, Durham, UK.

Google Scholar

[5] T.T. Öpöz, X. Chen: Proceedings of the 16th International Conference on Automation & Computing, 11 Sept 2010, Birmingham, UK.

Google Scholar

[6] T.T. Öpöz, X. Chen: Proceedings of the International Conference on Advances in Materials and Processing Technologies (AMPT2010), 1315 (1), pp.1467-1472.

Google Scholar

[7] D. Anderson, A. Warkentin, and R. Bauer: Int. J. of Machine Tools and Manufacture 51(12) (2011), pp.898-910.

Google Scholar

[8] M.F. Villumsen, T.G. Fauerholdt: LS-DYNA. Anwenderforum, Bamberg (2008), pp.17-36.

Google Scholar

[9] C. Espinosa, J.L. Lacome, J. Limido, M. Salaun, C. Mabru and R. Chieragatti: Proceedings of the 10th International LS-DYNA Users Conference, Dearborn, Michigan. (2008).

Google Scholar

[10] Ruttimann, Niklaus, Sebastian Buhl, and Konrad Wegener:  J Mach Eng 10 (2010), pp.17-29.

Google Scholar

[11] C. Su, L. Xu, M.G. Li, and J.J. Ma: Acta Aeronautica & Astronautica Sinica, 33 (11) (2012), pp.2130-2135.

Google Scholar

[12] J.O. Hallquist: LS-DYNA's Theoretical Manual, LSTC, Livermore, (2006).

Google Scholar

[13] M. Jutras:  Dissertation, Université Laval, (2008).

Google Scholar

[14] C. Li, S. Xiu and G. Cai: Diamond & Abrasives Engineering 4 (2004), pp.16-20.

Google Scholar

[15] J. Wang, R. Ye, Y. Tang and H. Bin: Diamond &Abrasives Engineering5 (2009), pp.41-45.

Google Scholar