[1]
G. Boothroyd. Assembly automation and product design[M]. Beijing: China Machine Press, (2009): pp.14-23.
Google Scholar
[2]
G. P. Maul and M. B. Thomas: A system model and simulation of the vibratory bowl feeder, J. Manuf. Sci., vol. 16, no. 5(1997), p.309–314.
DOI: 10.1016/s0278-6125(97)88461-0
Google Scholar
[3]
Y.F. Liang, Tan Weiming. Automatic machine and production line[M]. Beijing: HigherEducation, 2008: 62-63.
Google Scholar
[4]
SU J. Current status and development trends of vibration feeder[J]. Machinery Design & Manufacture, 2010, (7): 244-246.
Google Scholar
[5]
S.B. Choi, C.H. Lee, Force tracking control of a flexible gripper driven by a piezoceramic actuator, American Society of Mechanical Engineers Journal of Dynamic Systems, Measurements and Control 119 (3) (1997) 439–446.
DOI: 10.1115/1.2801276
Google Scholar
[6]
S.B. CHOI , D.H. LEE. Modal analysis and control of a bowl parts feeder activated by piezoelectric actuators[J]. Journal of Sound and Vibration, 2004, 275(1): 452-458.
DOI: 10.1016/j.jsv.2003.10.008
Google Scholar
[6]
CHANG S H, YANG T W. Dynamics of a piezoelectrically actuated vibratory feeder[C]. Proceedings of the 26th International Conference on Biennial mechanisms and robotics, Maryland, USA : ASME, 2000: 341-348.
DOI: 10.1115/detc2000/mech-14085
Google Scholar
[7]
Yung ; Shin Min-Sheng ; Chang Hong-Yuan . Analysis and design of four-bar linkage type vibratory parts feeder driven by piezoelectric actuator[C]. Proceeding of the 28th International Conference on Design Automation, Quebec, Canada : ASME, 2002: 43-50.
DOI: 10.1115/detc2002/dac-34037
Google Scholar
[8]
G. P. Maul and M. B. Thomas. A system model and simulation of the vibratory bowl feeder[J]. Manuf. Sci., 1997, 16(5): 309–314.
DOI: 10.1016/s0278-6125(97)88461-0
Google Scholar
[9]
T. Yung , H.C. Jar, C.Y. Lin, , et al. A new type of parts feeder driven by bimorph piezo actuator. [J].Ultrasonic,2005,43(7):566-573.
DOI: 10.1016/j.ultras.2004.11.007
Google Scholar
[10]
Y.T. Liu, H. Toshiro. Precision positioning device utilizing impact force of combined piezopneumatic actuator [J]. Asmetransactions on Mecha-tronics, 2001, 6(4): 467-473.
Google Scholar
[11]
P.C. CHAO, C.Y. SHEN. Dynamic modeling and experimental verification of a piezoelectric part feeder in a structure with parallel bimorph beams[J]. Ultrasonics, 2007, 46(3), 205-218.
DOI: 10.1016/j.ultras.2007.02.002
Google Scholar
[12]
Z. HU, G.P. MAUL, D. Farson. Piezo actuated vibratory feeding with vibration control[J]. International Journal of Production Research, 2007, 45(5): 1089-1100.
DOI: 10.1080/00207540500515156
Google Scholar
[13]
J. Smits, A. Ballato. Dynamic admittance matrix of piezoelectric cantilever bimorphs[J]. Journal of Microelectromechanical System, 1994, 3(3): 105-112.
DOI: 10.1109/84.311560
Google Scholar
[14]
G.J. Smits S.I. Dalke I.L. Cooney. The constituent equations of piezoelectric bimorphs[J] . Sensors and Acntators A, 1991, 28 : 41~61.
DOI: 10.1016/0924-4247(91)80007-c
Google Scholar
[15]
Y.F. Liang, W.M. Tan. Automatic machine and production line[M]. Beijing: Higher Education, 2008: 62-63.
Google Scholar