Analysis and Prediction of Surface Integrity in Machining: A Review

Article Preview

Abstract:

Surface integrity is widely used for evaluating the quality of machined components. It has a set of various parameters which can be grouped as: (a) topography parameters (b) mechanical parameters and (c) metallurgical state. Many factors affect surface integrity including cutting parameters, tool geometry, material properties and vibrations. We can make prediction and optimization for surface integrity by taking advantages of these factors. This paper reviews previous studies and offers a comprehensive summary of surface integrity in the following order: introduction of surface integrity, main parameters of surface integrity, factors affecting surface integrity, prediction and optimization for surface integrity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-172

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Davim, J.; Surface Integrity in Machining. Springer London Dordrecht Heidelberg New York, (2010).

Google Scholar

[2] Ulutan, D.; Ozel, T. Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools and Manufacture, 2011, 51 (3): 250–280.

DOI: 10.1016/j.ijmachtools.2010.11.003

Google Scholar

[3] Suraratchai, M. ;Limido, J.; Mabru, C.; Chieragatti, R. Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy. International Journal of Fatigue, 2008, 30 (12): 2119–2126.

DOI: 10.1016/j.ijfatigue.2008.06.003

Google Scholar

[4] Ryu, J.J.; Shrotriya, P. Influence of roughness on surface instability of medical grade cobalt-chromium alloy (CoCrMo) during contact corrosion-fatigue. Applied Surface Science, 2013, 273 (15): 536–541.

DOI: 10.1016/j.apsusc.2013.02.076

Google Scholar

[5] Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G. Methods of measuring residual stresses in components. Materials & Design, 2012, 35: 572-588.

DOI: 10.1016/j.matdes.2011.08.022

Google Scholar

[6] Chen, L.Y.; Wang, G.Z.; Tan, J.P.; Xuan, F.Z.; Tu, S.T. Effects of residual stress on creep damage and crack initiation in notched CT specimens of a Cr-Mo-V steel. Engineering Fracture Mechanics, 2013, 97: 80-91.

DOI: 10.1016/j.engfracmech.2012.10.020

Google Scholar

[7] Lammi, C.J.; Lados, D.A. Effects of residual stresses on fatigue crack growth behavior of structural materials: Analytical corrections. International Journal of Fatigue, 2011, 33(7): 858-867.

DOI: 10.1016/j.ijfatigue.2011.01.019

Google Scholar

[8] Ren, X.D.; Zhan, Q.B.; Yang, H.M.; Dai, F.Z.; Cui, C.Y.; Sun, G.F.; Ruan, L. The effects of residual stress on fatigue behavior and crack propagation from laser shock processing-worked hole. Materials & Design, 2013, 44: 149-154.

DOI: 10.1016/j.matdes.2012.07.024

Google Scholar

[9] Sharman, A.R.C.; Hughes, J.I.; Ridgway, K. An analysis of the residual stresses generated in Inconel 718™ when turning. Journal of Materials Processing Technology, 2006, 173(3): 359–367.

DOI: 10.1016/j.jmatprotec.2005.12.007

Google Scholar

[10] Pawade, R.S.; Joshi, S.S.; Brahmankar, P.K. Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. International Journal of Machine Tools and Manufacture, 2008, 48(1): 15–28.

DOI: 10.1016/j.ijmachtools.2007.08.004

Google Scholar

[11] Sridhar, B.R.; Devananda, G.; Ramachandra, K.; Bhat, R. Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834. Journal of Materials Processing Technology, 2003, 138(1-3): 628–634.

DOI: 10.1016/s0924-0136(03)00612-5

Google Scholar

[12] Sadat, A.B.; Reddy, M.Y.; Wang, B.P. Plastic deformation analysis in machining of Inconel 718 nickel base superalloy using both experimental and numerical methods. International Journal of Mechanical Sciences, 1991, 33(10): 829–842.

DOI: 10.1016/0020-7403(91)90005-n

Google Scholar

[13] Arunachalam, R.M.; Mannan, M.A.; Spowage, A.C. Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools. International Journal of Machine Tools and Manufacture, 2004, 44(9): 879–887.

DOI: 10.1016/j.ijmachtools.2004.02.016

Google Scholar

[14] Arunachalam, R.M.; Mannan, M.A.; Spowage, A.C. Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. International Journal of Machine Tools and Manufacture, 2004, 44(14): 1481–1491.

DOI: 10.1016/j.ijmachtools.2004.05.005

Google Scholar

[15] Dahlman, P.; Gunnberg, F.; Jacobson, M. The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. Journal of Materials Processing Technology, 2004, 147(2): 181–184.

DOI: 10.1016/j.jmatprotec.2003.12.014

Google Scholar

[16] Thiele, J.D.; Melkote, S.N. Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel. Journal of Materials Processing Technology, 1999, 94(2-3): 216–226.

DOI: 10.1016/s0924-0136(99)00111-9

Google Scholar

[17] Hua,J.; Shivpuri,R.; Cheng X.M.; Bedekar,V.; Matsumoto,Y.; Hashimoto,F.; Watkins, T.R. Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry. Materials Science and Engineering: A, 2005, 394(1-2): 238–248.

DOI: 10.1016/j.msea.2004.11.011

Google Scholar

[18] Aguiar, M.M.D.; Diniz, A.E.; Pederiva,R. Correlating surface roughness, tool wear and tool vibration in the milling process of hardened steel using long slender tools. International Journal of Machine Tools and Manufacture, 2013, 68: 1–10.

DOI: 10.1016/j.ijmachtools.2013.01.002

Google Scholar

[19] Lin, S.C.; Chang, M.F. A study on the effects of vibrations on the surface finish using a surface topography simulation model for turning. International Journal of Machine Tools and Manufacture, 1998, 38(7): 763–782.

DOI: 10.1016/s0890-6955(97)00073-4

Google Scholar

[20] Jiang, H.; Long, X.H.; Meng, G. Study of the correlation between surface generation and cutting vibrations in peripheral milling. Journal of Materials Processing Technology, 2008, 208(1-3): 229–238.

DOI: 10.1016/j.jmatprotec.2007.12.127

Google Scholar

[21] Brehl, D.E.; Dow, T.A. Review of vibration-assisted machining. Precision Engineering, 2008, 32(3): 153–172.

DOI: 10.1016/j.precisioneng.2007.08.003

Google Scholar

[22] Babitsky, V.I.; Kalashnikov, A.N.; Meadows, A.; Wijesundara, A.A.H.P. Ultrasonically assisted turning of aviation materials. Journal of Materials Processing Technology, 2003, 132(1-3): 157–167.

DOI: 10.1016/s0924-0136(02)00844-0

Google Scholar

[23] Azouzi, R.; Guillot, M. On-line Prediction of Surface Finish and Dimensional Deviation in Turning Using Neural Network Based Sensor Fusion. International Journal of Machine Tools and Manufacture, 1997, 37 (9): 1201–1217.

DOI: 10.1016/s0890-6955(97)00013-8

Google Scholar

[24] Huang, B.; Chen, J.C. An In-process Neural Network-based Surface Roughness Prediction System Using a Dynamometer in End Milling Operations. International Journal of Advanced Manufacturing Technology, 2003, 21 (5): 339–347.

DOI: 10.1007/s001700300039

Google Scholar

[25] Guo, Y.B.; Ammula, S.C. Real-time acoustic emission monitoring for surface damage in hard machining. International Journal of Machine Tools and Manufacture, 2005, 45(14): 1622–1627.

DOI: 10.1016/j.ijmachtools.2005.02.007

Google Scholar

[26] Axinte, D.A.; Dewes, R.C. Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. Journal of Materials Processing Technology, 2002, 127(3): 325–335.

DOI: 10.1016/s0924-0136(02)00282-0

Google Scholar

[27] Tsuchida, K.; Kawada, Y.; Kodama, S. A Study on the Residual Stress Distributions by Turning. Bulletin of JSME, 1975, 116(18): 123-130.

DOI: 10.1299/jsme1958.18.123

Google Scholar

[28] Kwon, Y.; Ertekin, Y.; Tseng, T. Characterization of tool wear measurement with relation to the surface roughness in turning. Machining Science and Technology: An International Journal, 2004, 8 (1): 39–51.

DOI: 10.1081/mst-120034239

Google Scholar

[29] El-Wahab, A.I.; Kishawy, H.A. A new method to improve the surface quality during CNC machining. International Journal of Production Research, 2000, 38(16): 3711–3723.

DOI: 10.1080/00207540050175969

Google Scholar

[30] Mishra, A.; Prasad, T. Residual Stresses Due to a Moving Heat Source. International Journal of Mechanical Sciences, 1985, 27(9): 571-581.

DOI: 10.1016/0020-7403(85)90073-6

Google Scholar

[31] Ee, K.C.; Dillon Jr. O.W.; Jawahir, I.S. Finite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radius. International Journal of Mechanical Sciences, 2005, 47(10): 1611–1628.

DOI: 10.1016/j.ijmecsci.2005.06.001

Google Scholar

[32] El-Sonbaty, I.A.; Khashaba, U.A.; Selmy, A.I.; Ali, A.I. Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach. Journal of Materials Processing Technology, 2008, 200(1-3): Pages 271–278.

DOI: 10.1016/j.jmatprotec.2007.09.006

Google Scholar

[33] Oktem, H.; Erzurumlu, T.; Erzincanli, F. Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm. Materials & Design, 2006, 27(9): 735–744.

DOI: 10.1016/j.matdes.2005.01.010

Google Scholar

[34] Ali, Y.M.; Zhang, L.C. Estimation of residual stresses induced by grinding using a fuzzy logic approach. Journal of Materials Processing Technology, 1997, 63(1-3): 875–880.

DOI: 10.1016/s0924-0136(96)02742-2

Google Scholar

[35] Dweiri, F.; Al-Jarrah, M.; Al-Wedyan, H. Fuzzy surface roughness modeling of CNC down milling of Alumic-79. Journal of Materials Processing Technology, 2003, 133(3): 266–275.

DOI: 10.1016/s0924-0136(02)00847-6

Google Scholar