[1]
Davim, J.; Surface Integrity in Machining. Springer London Dordrecht Heidelberg New York, (2010).
Google Scholar
[2]
Ulutan, D.; Ozel, T. Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools and Manufacture, 2011, 51 (3): 250–280.
DOI: 10.1016/j.ijmachtools.2010.11.003
Google Scholar
[3]
Suraratchai, M. ;Limido, J.; Mabru, C.; Chieragatti, R. Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy. International Journal of Fatigue, 2008, 30 (12): 2119–2126.
DOI: 10.1016/j.ijfatigue.2008.06.003
Google Scholar
[4]
Ryu, J.J.; Shrotriya, P. Influence of roughness on surface instability of medical grade cobalt-chromium alloy (CoCrMo) during contact corrosion-fatigue. Applied Surface Science, 2013, 273 (15): 536–541.
DOI: 10.1016/j.apsusc.2013.02.076
Google Scholar
[5]
Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G. Methods of measuring residual stresses in components. Materials & Design, 2012, 35: 572-588.
DOI: 10.1016/j.matdes.2011.08.022
Google Scholar
[6]
Chen, L.Y.; Wang, G.Z.; Tan, J.P.; Xuan, F.Z.; Tu, S.T. Effects of residual stress on creep damage and crack initiation in notched CT specimens of a Cr-Mo-V steel. Engineering Fracture Mechanics, 2013, 97: 80-91.
DOI: 10.1016/j.engfracmech.2012.10.020
Google Scholar
[7]
Lammi, C.J.; Lados, D.A. Effects of residual stresses on fatigue crack growth behavior of structural materials: Analytical corrections. International Journal of Fatigue, 2011, 33(7): 858-867.
DOI: 10.1016/j.ijfatigue.2011.01.019
Google Scholar
[8]
Ren, X.D.; Zhan, Q.B.; Yang, H.M.; Dai, F.Z.; Cui, C.Y.; Sun, G.F.; Ruan, L. The effects of residual stress on fatigue behavior and crack propagation from laser shock processing-worked hole. Materials & Design, 2013, 44: 149-154.
DOI: 10.1016/j.matdes.2012.07.024
Google Scholar
[9]
Sharman, A.R.C.; Hughes, J.I.; Ridgway, K. An analysis of the residual stresses generated in Inconel 718™ when turning. Journal of Materials Processing Technology, 2006, 173(3): 359–367.
DOI: 10.1016/j.jmatprotec.2005.12.007
Google Scholar
[10]
Pawade, R.S.; Joshi, S.S.; Brahmankar, P.K. Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. International Journal of Machine Tools and Manufacture, 2008, 48(1): 15–28.
DOI: 10.1016/j.ijmachtools.2007.08.004
Google Scholar
[11]
Sridhar, B.R.; Devananda, G.; Ramachandra, K.; Bhat, R. Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834. Journal of Materials Processing Technology, 2003, 138(1-3): 628–634.
DOI: 10.1016/s0924-0136(03)00612-5
Google Scholar
[12]
Sadat, A.B.; Reddy, M.Y.; Wang, B.P. Plastic deformation analysis in machining of Inconel 718 nickel base superalloy using both experimental and numerical methods. International Journal of Mechanical Sciences, 1991, 33(10): 829–842.
DOI: 10.1016/0020-7403(91)90005-n
Google Scholar
[13]
Arunachalam, R.M.; Mannan, M.A.; Spowage, A.C. Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools. International Journal of Machine Tools and Manufacture, 2004, 44(9): 879–887.
DOI: 10.1016/j.ijmachtools.2004.02.016
Google Scholar
[14]
Arunachalam, R.M.; Mannan, M.A.; Spowage, A.C. Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. International Journal of Machine Tools and Manufacture, 2004, 44(14): 1481–1491.
DOI: 10.1016/j.ijmachtools.2004.05.005
Google Scholar
[15]
Dahlman, P.; Gunnberg, F.; Jacobson, M. The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. Journal of Materials Processing Technology, 2004, 147(2): 181–184.
DOI: 10.1016/j.jmatprotec.2003.12.014
Google Scholar
[16]
Thiele, J.D.; Melkote, S.N. Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel. Journal of Materials Processing Technology, 1999, 94(2-3): 216–226.
DOI: 10.1016/s0924-0136(99)00111-9
Google Scholar
[17]
Hua,J.; Shivpuri,R.; Cheng X.M.; Bedekar,V.; Matsumoto,Y.; Hashimoto,F.; Watkins, T.R. Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry. Materials Science and Engineering: A, 2005, 394(1-2): 238–248.
DOI: 10.1016/j.msea.2004.11.011
Google Scholar
[18]
Aguiar, M.M.D.; Diniz, A.E.; Pederiva,R. Correlating surface roughness, tool wear and tool vibration in the milling process of hardened steel using long slender tools. International Journal of Machine Tools and Manufacture, 2013, 68: 1–10.
DOI: 10.1016/j.ijmachtools.2013.01.002
Google Scholar
[19]
Lin, S.C.; Chang, M.F. A study on the effects of vibrations on the surface finish using a surface topography simulation model for turning. International Journal of Machine Tools and Manufacture, 1998, 38(7): 763–782.
DOI: 10.1016/s0890-6955(97)00073-4
Google Scholar
[20]
Jiang, H.; Long, X.H.; Meng, G. Study of the correlation between surface generation and cutting vibrations in peripheral milling. Journal of Materials Processing Technology, 2008, 208(1-3): 229–238.
DOI: 10.1016/j.jmatprotec.2007.12.127
Google Scholar
[21]
Brehl, D.E.; Dow, T.A. Review of vibration-assisted machining. Precision Engineering, 2008, 32(3): 153–172.
DOI: 10.1016/j.precisioneng.2007.08.003
Google Scholar
[22]
Babitsky, V.I.; Kalashnikov, A.N.; Meadows, A.; Wijesundara, A.A.H.P. Ultrasonically assisted turning of aviation materials. Journal of Materials Processing Technology, 2003, 132(1-3): 157–167.
DOI: 10.1016/s0924-0136(02)00844-0
Google Scholar
[23]
Azouzi, R.; Guillot, M. On-line Prediction of Surface Finish and Dimensional Deviation in Turning Using Neural Network Based Sensor Fusion. International Journal of Machine Tools and Manufacture, 1997, 37 (9): 1201–1217.
DOI: 10.1016/s0890-6955(97)00013-8
Google Scholar
[24]
Huang, B.; Chen, J.C. An In-process Neural Network-based Surface Roughness Prediction System Using a Dynamometer in End Milling Operations. International Journal of Advanced Manufacturing Technology, 2003, 21 (5): 339–347.
DOI: 10.1007/s001700300039
Google Scholar
[25]
Guo, Y.B.; Ammula, S.C. Real-time acoustic emission monitoring for surface damage in hard machining. International Journal of Machine Tools and Manufacture, 2005, 45(14): 1622–1627.
DOI: 10.1016/j.ijmachtools.2005.02.007
Google Scholar
[26]
Axinte, D.A.; Dewes, R.C. Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. Journal of Materials Processing Technology, 2002, 127(3): 325–335.
DOI: 10.1016/s0924-0136(02)00282-0
Google Scholar
[27]
Tsuchida, K.; Kawada, Y.; Kodama, S. A Study on the Residual Stress Distributions by Turning. Bulletin of JSME, 1975, 116(18): 123-130.
DOI: 10.1299/jsme1958.18.123
Google Scholar
[28]
Kwon, Y.; Ertekin, Y.; Tseng, T. Characterization of tool wear measurement with relation to the surface roughness in turning. Machining Science and Technology: An International Journal, 2004, 8 (1): 39–51.
DOI: 10.1081/mst-120034239
Google Scholar
[29]
El-Wahab, A.I.; Kishawy, H.A. A new method to improve the surface quality during CNC machining. International Journal of Production Research, 2000, 38(16): 3711–3723.
DOI: 10.1080/00207540050175969
Google Scholar
[30]
Mishra, A.; Prasad, T. Residual Stresses Due to a Moving Heat Source. International Journal of Mechanical Sciences, 1985, 27(9): 571-581.
DOI: 10.1016/0020-7403(85)90073-6
Google Scholar
[31]
Ee, K.C.; Dillon Jr. O.W.; Jawahir, I.S. Finite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radius. International Journal of Mechanical Sciences, 2005, 47(10): 1611–1628.
DOI: 10.1016/j.ijmecsci.2005.06.001
Google Scholar
[32]
El-Sonbaty, I.A.; Khashaba, U.A.; Selmy, A.I.; Ali, A.I. Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach. Journal of Materials Processing Technology, 2008, 200(1-3): Pages 271–278.
DOI: 10.1016/j.jmatprotec.2007.09.006
Google Scholar
[33]
Oktem, H.; Erzurumlu, T.; Erzincanli, F. Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm. Materials & Design, 2006, 27(9): 735–744.
DOI: 10.1016/j.matdes.2005.01.010
Google Scholar
[34]
Ali, Y.M.; Zhang, L.C. Estimation of residual stresses induced by grinding using a fuzzy logic approach. Journal of Materials Processing Technology, 1997, 63(1-3): 875–880.
DOI: 10.1016/s0924-0136(96)02742-2
Google Scholar
[35]
Dweiri, F.; Al-Jarrah, M.; Al-Wedyan, H. Fuzzy surface roughness modeling of CNC down milling of Alumic-79. Journal of Materials Processing Technology, 2003, 133(3): 266–275.
DOI: 10.1016/s0924-0136(02)00847-6
Google Scholar