[1]
Y.F. Zheng, H. Hemami, Mathmatical modeling of a robot collision with its environment, J. Journal of Robotic Systems. 2 (1985) 289-307.
DOI: 10.1002/rob.4620020307
Google Scholar
[2]
I.D. Walker, The use of kinematic redundancy in reducing impact and contact effects in manipulation, C. IEEE International Conference on Robotics and Automation, Cincinnati, USA, May 13-18, (1990).
DOI: 10.1109/robot.1990.126016
Google Scholar
[3]
K. Yoshida, R. Kurazume, N Sashida, et al, Modeling of collision dynamics for space free-floating links with extend generalized inertia tensor, C. IEEE International Conference on Robotics and Automation, Nice, France, May 12-14, (1992).
DOI: 10.1109/robot.1992.220182
Google Scholar
[4]
P.F. Huang, Y.S. Xu, B. Liang, Contact and impact dynamics of space manipulator and free-flying target, C. IEEE International Conference on Intelligent Robotics and Systems, Alberta, Canada, August 2-6, (2005).
DOI: 10.1109/iros.2005.1545260
Google Scholar
[5]
L.B. Wee, M.W. Walker, Space based robot manipulator: dynamics of contact and trajectory planning for impact minimization, C. American Control Conference, Chicago, USA, June 24-26, (1992).
DOI: 10.23919/acc.1992.4792178
Google Scholar
[6]
P.C. Cong, Z.W. Sun, Pre-impact configuration planning for capture object of space manipulator, C. 2nd International Symposium on Systems and Control in Astronautics, Shenzhen, China, December 10-12, (2008).
DOI: 10.1109/isscaa.2008.4776179
Google Scholar
[7]
G. Chen, Q.X. Jia, H.X. Sun, et al, Analysis on impact motion of space robot in the object capturing process, J. Robot, 32 (2010) 432-438.
DOI: 10.3724/sp.j.1218.2010.00432
Google Scholar
[8]
J.Z. Hong, Computational dynamics of multibody systems, High Education Press, Beijing, (1999).
Google Scholar