Examining the Use of B-Splines in Parking Assist Systems

Article Preview

Abstract:

The main objective of the presented study and simulations conducted was to investigate the prospect of using B-spline curves for the automatic parking, i.e. self-driving, or intelligent vehicles. We consider the problem of parallel parking for a non-holonomic vehicle with a known maximum path curvature. The relationship between the properties of the path and the geometry of corresponding parking spot is revealed. The unique properties of B-splines are exploited to synthesize a path that is smooth and of continuous curvature. The contributions of this project are in the generations of better, smooth continuous paths. This improves passenger comfort during the parallel parking maneuver and allow vehicles to park in tighter spots by increasing the feasible range of the parking manoeuver.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1025-1029

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Dolgov, S. Thrun, M. Montemerlo and J. Diebel, Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments, The International Journal of Robotics Research, vol. 29, pp.485-501, April 1, 2010 (2010).

DOI: 10.1177/0278364909359210

Google Scholar

[2] S. Y. Woo, C. Urmson, D. Wettergreen, and L. Jin-Woo, Building Lane-graphs for Autonomous Parking, in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, 2010, pp.6052-6057.

DOI: 10.1109/iros.2010.5650331

Google Scholar

[3] E. S. Kardoss and B. Kiss, Path Planning and Tracking Control for an Automatic Parking Assist System, in European Robotics Symposium 2008. vol. 44, H. Bruyninckx, L. Přeučil, and M. Kulich, Eds., ed: Springer Berlin Heidelberg, 2008, pp.175-184.

DOI: 10.1007/978-3-540-78317-6_18

Google Scholar

[4] D. S. Meek and D. J. Walton, An Arc Spline Approximation to a Clothoid, Journal of Computational and Applied Mathematics, vol. 170, pp.59-77, 9/1/ (2004).

DOI: 10.1016/j.cam.2003.12.038

Google Scholar

[5] L. Z. Wang, K. T. Miura, E. Nakamae, T. Yamamoto, and T. J. Wang, An Approximation Approach of the Clothoid Curve Defined in the Interval [0, π/2] and its Offset by Free-form Curves, Computer-Aided Design, vol. 33, pp.1049-1058, 12/ (2001).

DOI: 10.1016/s0010-4485(00)00142-1

Google Scholar

[6] D. J. Walton and D. S. Meek, A Controlled Clothoid Spline, Computers & Graphics, vol. 29, pp.353-363, 6/ (2005).

DOI: 10.1016/j.cag.2005.03.008

Google Scholar

[7] J. McCrae and K. Singh, "Sketching Piecewise Clothoid Curves, Computers & Graphics, vol. 33, pp.452-461, 8/ (2009).

DOI: 10.1016/j.cag.2009.05.006

Google Scholar

[8] Z. Shuwen, M. Simkani, and M. H. Zadeh, Automatic Vehicle Parallel Parking Design Using Fifth Degree Polynomial Path Planning, in Vehicular Technology Conference (VTC Fall), 2011 IEEE, 2011, pp.1-4.

DOI: 10.1109/vetecf.2011.6093275

Google Scholar

[9] F. Gómez-Bravo, F. Cuesta, A. Ollero, and A. Viguria, Continuous curvature path generation based on -spline curves for parking manoeuvres, Robotics and Autonomous Systems, vol. 56, pp.360-372, 4/30/ (2008).

DOI: 10.1016/j.robot.2007.08.004

Google Scholar

[10] Y. Kwangjin and S. Sukkarieh, An Analytical Continuous-Curvature Path-Smoothing Algorithm, Robotics, IEEE Transactions on, vol. 26, pp.561-568, (2010).

DOI: 10.1109/tro.2010.2042990

Google Scholar

[11] K. G. Jolly, R. Sreerama Kumar, and R. Vijayakumar, A Bezier curve based path planning in a multi-agent robot soccer system without violating the acceleration limits, Robotics and Autonomous Systems, vol. 57, pp.23-33, 1/31/ (2009).

DOI: 10.1016/j.robot.2008.03.009

Google Scholar

[12] K. Yang, D. Jung, and S. Sukkarieh, Continuous curvature path-smoothing algorithm using cubic B zier spiral curves for non-holonomic robots, Advanced Robotics, vol. 27, pp.247-258, 2013/03/01 (2013).

DOI: 10.1080/01691864.2013.755246

Google Scholar

[13] M. Lepetič, G. Klančar, I. Škrjanc, D. Matko, and B. Potočnik, Time optimal path planning considering acceleration limits, Robotics and Autonomous Systems, vol. 45, pp.199-210, 12/31/ (2003).

DOI: 10.1016/j.robot.2003.09.007

Google Scholar

[14] E. Papadopoulos, I. Poulakakis, and I. Papadimitriou, On Path Planning and Obstacle Avoidance for Nonholonomic Platforms with Manipulators: A Polynomial Approach, The International Journal of Robotics Research, vol. 21, pp.367-383, April 1, 2002 (2002).

DOI: 10.1177/027836402320556377

Google Scholar

[15] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, and S. Ettinger, et al., "Junior: The Stanford Entry in the Urban Challenge, in The DARPA Urban Challenge. vol. 56, M. Buehler, K. Iagnemma, and S. Singh, Eds., ed: Springer Berlin Heidelberg, 2009, pp.91-123.

DOI: 10.1007/978-3-642-03991-1_3

Google Scholar

[16] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, and M. N. Clark, et al., "Autonomous Driving in Urban Environments: Boss and the Urban Challenge, in The DARPA Urban Challenge. vol. 56, M. Buehler, K. Iagnemma, and S. Singh, Eds., ed: Springer Berlin Heidelberg, 2009, pp.1-59.

DOI: 10.1007/978-3-642-03991-1

Google Scholar

[17] R. N. Jazar, Vehicle Dynamics: Theory and Application: Springer, (2008).

Google Scholar

[18] G. Farin, Curves and Surfaces for CAGD: Morgan Kaufmann, (2002).

Google Scholar

[19] C. De Boor, On Calculating with B-splines, Journal of Approximation Theory, vol. 6, pp.50-62, / (1972).

Google Scholar