[1]
Specification of the Bluetooth Systems-Core. The Bluetooth Special Interest Group (SIG) [Online]. Available: http: /www. bluetooth. com.
Google Scholar
[2]
P. Z. Fan and M. Darnell, Sequence Design for Communications Applications. Research Studies Press (RSP), John Wiley & Sons, London, UK, (1996).
Google Scholar
[3]
S. W. Golomb and G. Gong, Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar. Cambridge, U.K.: Cambridge University Press, (2005).
DOI: 10.1017/cbo9780511546907
Google Scholar
[4]
Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Transactions on Information Theory, vol. 20, no. 1, p.90–94, Jan. (1974).
DOI: 10.1109/tit.1974.1055169
Google Scholar
[5]
D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences, IEEE Transactions on Information Theory, vol. 50, no. 9, p.2149–2154, Sep. (2004).
DOI: 10.1109/tit.2004.833362
Google Scholar
[6]
C. Ding, M. Miosio, and J. Yuan, Algebraic constructions of optimal frequency hopping sequences, IEEE Transactions on Information Theory, vol. 53, no. 7, p.2606–2610, Jul. (2007).
DOI: 10.1109/tit.2007.899545
Google Scholar
[7]
C. Ding and J. Yin, Sets of optimal frequency-hopping sequences, IEEE Transactions on Information Theory, vol. 54, no. 8, p.3741–3745, Aug. (2008).
DOI: 10.1109/tit.2008.926410
Google Scholar
[8]
C. Ding, R. Fuji-Hara, Y. Fujiwara, M. Jimbo, and M. Mishima, Sets of frequency hopping sequences: Bounds and optimal constructions, IEEE Transactions on Information Theory, vol. 55, no. 7, p.3297–3304, Jul. (2009).
DOI: 10.1109/tit.2009.2021366
Google Scholar
[9]
D. Y. Peng, T. Peng, X. H. Tang, and X. H. Niu, A class of optimal frequency hopping sequences based upon the theory of power residues, Proceedings of the 5th International Conference on Sequences and Their Applications, p.188–196, Sep. (2008).
DOI: 10.1007/978-3-540-85912-3_18
Google Scholar
[10]
P. Z. Fan, M. H. Lee, and D. Y. Peng, New family of hopping sequences for time/frequency CDMA systems, IEEE Transactions on Wireless Communications, vol. 4, no. 6, p.2836–2842, Nov. (2005).
DOI: 10.1109/twc.2005.858325
Google Scholar
[11]
R. Fuji-Hara, Y. Miao, and M. Mishima, Optimal frequency hopping sequences: A combinatorial approach, IEEE Transactions on Information Theory, vol. 50, no. 10, p.2408–2420, Oct. (2004).
DOI: 10.1109/tit.2004.834783
Google Scholar
[12]
G. Ge, R. Fuji-Hara, and Y. Miao, Further combinatorial constructions for optimal frequency hopping sequences, Journal of Combinatorial Theory Ser. A, vol. 113, p.1699–1718, (2006).
DOI: 10.1016/j.jcta.2006.03.019
Google Scholar
[13]
G. Ge, Y. Miao, and Z. Yao, Optimal frequency hopping sequences: Auto- and cross-correlation properties, IEEE Transactions on Information Theory, vol. 55, no. 2, p.867–879, Feb. (2009).
DOI: 10.1109/tit.2008.2009856
Google Scholar
[14]
W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Transactions on Information Theory, vol. 51, no. 3, p.1139–1141, Mar. (2005).
DOI: 10.1109/tit.2004.842708
Google Scholar
[15]
P. V. Kumar, Frequency-hopping code sequence designs having large linear span, IEEE Transactions on Information Theory, vol. 34, no. 1, p.146–151, Jan. (1988).
DOI: 10.1109/18.2616
Google Scholar
[16]
P. Udaya and M. U. Siddiqi, Optimal large linear span frequency hopping patterns derived from polynomial residue class rings, IEEE Transactions on Information Theory, vol. 44, no. 4, p.1492–1503, Apr. (1998).
DOI: 10.1109/18.681324
Google Scholar
[17]
J. H. Chung and K. Yang, Optimal frequency-hopping sequences with new parameters, IEEE Transactions on Information Theory, vol. 56, no. 4, p.1685–1693, Apr. (2010).
DOI: 10.1109/tit.2010.2040888
Google Scholar