[1]
Faydasicok O, Arik S. Equilibrium and stability analysis of delayed neural networks under parameter uncertainties, Applied Mathematics and Computation, 2012, 218 (12): 6716-6726.
DOI: 10.1016/j.amc.2011.12.036
Google Scholar
[2]
Gilli M. Strange attractors in delayed cellular neural networks, IEEE Trans. Circuits Syst. I, 1993, 40 (11): 849-853.
DOI: 10.1109/81.251826
Google Scholar
[3]
Balasubramaniam P, Chandran R, Theesar S J S, Synchronization of chaotic nonlinear continuous neural networks with time-varying delay, Cogn. Neurodyn., 2011, 5 (4): 361-371.
DOI: 10.1007/s11571-011-9162-0
Google Scholar
[4]
Chen G R, Zhou J, Liu Z. Global synchronization of coupled delayed neural networks with application to chaotic CNN models, Int. J. Bifurcat Chaos, 2004, 14: 2229-2240.
DOI: 10.1142/s0218127404010655
Google Scholar
[5]
Cheng C J, Liao T L, Yan J J, et al. Exponential synchronization of a class of neural networks with time-varying delays, IEEE Trans. Syst. Man Cybern. Part B, 2006, 36 (1): 209-215.
DOI: 10.1109/tsmcb.2005.856144
Google Scholar
[6]
Cao J D, Lu J Q. Adaptive synchronization of neural networks with or without time-varying delay, Chaos, 2006, 16 (1): 013133-1–013133-6.
DOI: 10.1063/1.2178448
Google Scholar
[7]
Cui B, Lou X. Global asymptotic stability of BAM neural networks with distributed delays and reaction-diffusion terms, Chaos, Solitons and Fractals, 2005, 27: 1347-1354.
DOI: 10.1016/j.chaos.2005.04.112
Google Scholar
[8]
Liang J L, Cao J D. Global exponential stability of reaction-diffusion recurrent neural networks with time-varying delays, Physics Letters A, 2003, 314: 434-442.
DOI: 10.1016/s0375-9601(03)00945-9
Google Scholar
[9]
Doyle J C, Glover K, Khargonekar P P, et al. Statespace solutions to standard H2 and H∞ control problems, IEEE Trans. Autom. Control, 1989, 34: 831-847.
DOI: 10.1109/9.29425
Google Scholar