[1]
Lee, J. Polymer nanoengineering for biomedical application. Ann. Biomed. Engng, 2006, 34, 75–88.
Google Scholar
[2]
Graham, K. A. a. G. 3D structures: multi-layer micro/nano fabrication. In NanoSMat2008, Barcelona, (2008).
Google Scholar
[3]
Green, T., A. Gold electrodeposition for microelectronic, optoelectronic and microsystem applications. Gold Bull., 2007, 40, 105–114.
DOI: 10.1007/bf03215566
Google Scholar
[4]
Rai-Choudhury, P., Handbook of microlithography, micromachining and microfabrication, 1997 (SPIE Optical Engineering Press, Institution of Electrical Engineers).
Google Scholar
[5]
Kratt, K., Badilita, V., Burger, T., Mohr, J., Brner, M., Korvink, J. G., and Wallrabe, U. High aspect ratio PMMA posts and characterization method for micro coils manufactured with an automatic wire bonder. Sensors and Actuators A: Phys., 2009, 156(2), 328–333.
DOI: 10.1016/j.sna.2009.10.010
Google Scholar
[6]
Malek, C. K. and Saile, V. Applications of LIGA technology to precision manufacturing of high-aspectratio micro-components and -systems: a review. Microelectronics J., 2004, 35(2), 131–143.
DOI: 10.1016/j.mejo.2003.10.003
Google Scholar
[7]
Mekaru, H., Kusumi, S., Sato, N., Shimizu, M., Yamashita, M., Shimada, O., and Hattori, T. Fabrication of a spiral microcoil using a 3D-LIGA process. Microsyst. Technol., 2006, 13(3), 393–402.
DOI: 10.1007/s00542-006-0202-3
Google Scholar
[8]
Becker, E. W., Ehrfeld, W., Hagmann, P., Maner, A., and Mu¨nchmeyer, D. Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelectronic Engng, 1986, 4(1), 35–56.
DOI: 10.1016/0167-9317(86)90004-3
Google Scholar
[9]
Dambrowsky, N. S. J., Bade, K., and Koster, F. Aufsatz Mikrogalvanoformung von Goldbauteilen fur mechanische Applikationen. Galvanotechnik, 2006, 1, 188–192.
Google Scholar
[10]
Haluzan, D. Microwave LIGA-MEMS variable capacitors. A Thesis submitted to the College of Graduate Studies and Research in partial fulfilment of the requirements for the Degree of Master of Science in the Department of Electrical Engineering, University of Saskatchewan Saskatoon, Saskatchewan, Canada, (2004).
Google Scholar
[11]
Luechel, B. M., Koenig, A., Quenzer, H. J., and Huber, H. L. Galvanoplated 3D structures for micro systems. Microelectronic Engng, 1994, 23, 455–459.
DOI: 10.1016/0167-9317(94)90194-5
Google Scholar
[12]
Engelmann, G. E., Simon, O. J., Reichl, H., and Technol. der Mikroperipherik, Technical University Berlin Fabrication of high depth-to width aspect ratio microstructures. Micro. Electro. Mech. Systems, IEEE, 1992, 93–98.
DOI: 10.1109/memsys.1992.187697
Google Scholar
[13]
Jun-Bo, Y. C. -H., Euisik, H., and Yoon, C. -K. Monolithic integration of 3-D electroplated microstructures with unlimited number of levels using planarization with a sacrificial metallic mold (PSMM). Micro. Electro. Mech. Systems, IEEE, 1999, 624–629.
DOI: 10.1109/memsys.1999.746900
Google Scholar
[14]
Sun, J. Three-dimensional monolithic MEMS coil. A Thesis submitted to the Division of Research and Advanced Studies of the University of Cincinnati, Ohio, (2003).
Google Scholar