Polymer Stabilized Undoped and Copper Doped Cadmium Sulphide Nanoparticles: Polymer Crosslinked, Optical, and Thermal Stability

Article Preview

Abstract:

Cadmium sulfide (CdS) nanoparticles synthesized by utilization of wet chemical technique are grown in polyvinyl alcohol (PVA) matrix. X-ray diffraction (XRD) pattern shows the typical inter-planar spacing corresponding to the cubic phase of CdS. High-resolution transmission electron microscopy (HRTEM) studies show the nanoparticles formation with diameter around 11 nm. Particle size is further determined by dynamic light scattering (DLS) measurement. The polymerization of PVA is confirmed by fourier transform infrared (FTIR) spectroscopy of CdS nanoparticles. UV-visible optical spectroscopy study shows that sharp excitonic bands are largely blue shifted from the absorption onset of bulk CdS and inter band transition of copper doped samples. Thermal stability of the samples is measured by thermogravimetric (TG) analysis which is also studied in details.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

291-296

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.Y. Geng, L.D. Zhang, G.Z. Wang, T. Xie, Y.G. Zhang and G.W. Meng: Appl. Phys. Lett. Vol. 84 (2004), pp.2157-2159.

Google Scholar

[2] A.A. Khosravi, M. Kundu, L. Jatwa, S.K. Deshpande, U.A. Bhagwat, M. Sastry and S.K. Kulkarni: Appl. Phys. Lett. Vol. 67 (1995), pp.2702-2704.

DOI: 10.1063/1.114298

Google Scholar

[3] S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova and D.M. Treger: Science Vol. 294 (2001), pp.1488-1495.

DOI: 10.1126/science.1065389

Google Scholar

[4] Ch Barglik-Chory, Ch Remenyi, H. Strohm and G. Müller: J. Phys. Chem. B Vol. 108 (2004), pp.7637-7640.

DOI: 10.1021/jp036476x

Google Scholar

[5] F. Antolini, M. Pentimalli, T.D. Luccio, R. Terzi, M. Schioppa, M. Re, L. Mirenghi and L. Tapfer: Mater. Lett. Vol. 59 (2005), pp.3181-3187.

DOI: 10.1016/j.matlet.2005.05.047

Google Scholar

[6] . Wang, S. Yang, C. Yang, Z. Li, J. Wang and W. Ge: J. Phys. Chem. B Vol. 104 (2000), pp.11853-11858.

Google Scholar

[7] J.X. Yao, G.L. Zhao, D. Wang and G.R. Han: Mater. Lett. Vol. 59 (2005), pp.3652-3655.

Google Scholar

[8] W.S. Chae, H.W. Shin, E.S. Lee, E.J. Shin, J.S. Jung and Y.R. Kim: J. Phys. Chem. B Vol. 109 (2005), p.6204−6209.

Google Scholar

[9] G. Mie. Beiträge zur optic trüber medien, speziell kolloidaler metallösungen. Ann Physik. Vol. 4 (1908), pp.377-445.

DOI: 10.1002/andp.19083300302

Google Scholar

[10] J. Coates. Interpretation of Infrared Spectral, a practical approach. Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd, Chichester. (2000) pp.10815-10837.

Google Scholar

[11] P. Mandal, S.S. Talwar, S.S. Major and R.S. Srinivasa: J. Chem. Phys. Vol. 128 (2008), pp.14703-114709.

Google Scholar

[12] C.N.R. Rao, G.U. Kulkarni, P.J. Thomas and P.P. Edwardy: Chem A Euro J. Vol. 8 (2002), pp.28-35.

Google Scholar

[13] P.P. Kiran, B.N.S. Bhaktha, D.N. Rao and G. De: J. Appl. Phys. Vol. 96 (2004), pp.6717-6723.

Google Scholar

[14] D.M. Fernandes, A.A. Hechenleitner and E.A. Pineda: Thermochimca Acta. Vol. 441 (2006), pp.101-109.

Google Scholar