Fabrication of Porous Titanium Dioxide Film by Oxidization of Titanium Foil and its Photocatalytic Performance for Degradation of Methyl Orange

Article Preview

Abstract:

Porous titanium dioxide film is an important photocatalyst. To bridge the gap between the application and traditional preparation of porous TiO2 film, an approach was developed to achieve porous TiO2 film by oxidization. SEM and XRD were used to characterize the morphologies and crystalline structure. Photodegradation of methyl orange was performed to investigate the photovoltaic performance. The results reveal: (i) the film obtained by oxidization has irregular porous structure with many protuberances on its surface, pore diameter ranging from 20 to 300 nm, and an average thickness of 40 μm, while that fabricated by potential anodization was highlyordered with pore diameter of about 50 nm and thickness of about 6 μm; (ii) the former has anatase structure after being calcined, while the latter contains anatase and titanium; and (iii) the former has higher adsorption and photocatalytic activity than the latter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

276-280

Citation:

Online since:

January 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Macak, H. Tauchiya, P. Schmuki: Angew. Chem. Int. Ed. 44(2005)2100.

Google Scholar

[2] C. Richter, Z. Wu, E. Panaitescu, R.J. Willey, L. Menon: Adv. Mater. 19(2007)946.

Google Scholar

[3] J.M. Macak, P. Schmuki: Electrochim. Acta 52(2006)1258.

Google Scholar

[4] P. Xiao, B. Garcia, Q. Guo, D. Liu, G. Cao: Electrochem. Commun. 9(2007)2441.

Google Scholar

[5] K.S. Raja, T. Gandhi, M. Misra: Electrochem. Commun. 9 (2007)1069.

Google Scholar

[6] N.K. Allam, C.A. Grimes: Sol. Energy Mater. Sol. Cells 92 (2008)1468.

Google Scholar

[7] X. Yu, Y. Li, W. Wlodarski, S. Kandasamy, K. Kalantar–zadeh: Sensors Actuat. B 130(2008)25.

Google Scholar

[8] R. Hahn, J.M. Macak, P. Schmuki: Electrochem. Commun. 9(2007)947.

Google Scholar

[9] Y. Yang, X. Wang, L. Li: Mater. Sci. Eng. B 149(2008)58.

Google Scholar

[10] H.J. Oh, J.H. Lee, Y.J. Kim, S.J. Suh, J.H. Lee, C.S. Chi: App. Catal. B 84(2008)142.

Google Scholar

[11] S. Kaneco, Y. Chen, Paul Westerhoff, John C. Crittenden, Scripta Mater. 56(2007)373.

Google Scholar

[12] S. Liu, K. Huang, Sol. Energy Mater. Sol. Cells 85(2005) 125.

Google Scholar

[13] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14(1998)3160.

DOI: 10.1021/la9713816

Google Scholar

[14] D. Bavykin, V. Parmon, A. Lapkin, F. Walsh, J. Mater. Chem. 14(2004)3370.

Google Scholar

[15] V.P. Godbole, Y.S. Kim, G.S. Kim, M.A. Dar, H.S. Shin, . Electrochim. Acta 52(2006)1781.

Google Scholar

[16] O. Sánchez, M. Hernández-Vélez, D. Navas, M.A. Auger, J.L. Baldonedo, R. Sanz, K.R. Pirota, M. Vázquez, Thin Solid Films 495(2006)149.

DOI: 10.1016/j.tsf.2005.08.203

Google Scholar

[17] S. Inoue, S. Todoroki, S. Suehara, T. Konishi, S.Z. Chu, K. Wada, T. Kikkojin, M. Isogai, Y. Katsuta, T. Sakamoto, A. Yasumori, J. Non–Cryst. Solids 352(2006)632.

DOI: 10.1016/j.jnoncrysol.2005.11.064

Google Scholar

[18] K. Deng, L. Lin. Technol & Development of Chem Indus 40(2011)7.

Google Scholar

[19] H.F. Zhang, Y.K. Lai, J. Li, L. Sun, C.J. Lin, Acta Chim Sinica 65(2007)2363.

Google Scholar

[20] G.E. Thompson, R.C. Furneaux, G.C. Wood, J.A. Richardson, J.S. Goode, Nature 272(1978)433.

Google Scholar

[21] G.E. Thompson, R.C. Furneaux, G.C. Wood, Corros. Sci. 18(1978)481.

Google Scholar

[22] G.E. Thompson, G.C. Wood, Nature 290(1981)230.

Google Scholar

[23] O. Jessensky, F. Muller, U. Gosele, Appl. Phys. Lett. 72(1998)1173.

Google Scholar