Synthesis of Fe3O4 Nanotubes under Assistance of Microwave by Tuning Chemical Deposition Mechanism and its Magnetic Properties

Article Preview

Abstract:

To overcome the overcoming of agglomeration and reclamation of nanoparticulate materials, it is imperative to synthesize nanosized materials with other morphologies. Fe3O4 nanotubes were synthesized by using anodized aluminum oxide as template under microwave assistance by tuning the deposition mechanism in this work. The obtained nanotubes were characterized by the means of XRD and SEM. Its magnetic property was also investigated. Results show that tubes are of the spinel structure, a layer of about 30 nm Fe3O4 was deposited attaching to the AAO wall, and the nanotubes possess good magnetic performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

258-262

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Gao, S. Zhao, X. Cheng, X. Wang, L. Zheng: Chem. Eng. J. 223(2013)84.

Google Scholar

[2] X. Hu, B. Liu, Y. Deng, H. Chen, S. Luo, C. Sun, P. Yang, S. Yang: Appl. Catal. B 107(2011)274.

Google Scholar

[3] M. Dai, J. Li, B. Kang, C. Ren, Y. Dai, Y. Dong: Mater. Rev. 27(2013)83.

Google Scholar

[4] C. Ma, W. Liu, H. Zheng, Y. Wang, Y. Luo: Inorg. Chem. Indust. 41(2009)24.

Google Scholar

[5] J.H. Ramirez, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, C. Moreno-Castilla, C.A. Costa, L.M. Madeira, Appl. Catal. B: Environ. 75 (2007) 312–323.

DOI: 10.1016/j.apcatb.2007.05.003

Google Scholar

[6] Y. Long, Z. Chen, Z. Liu, Z. Zhang, M. Wan, N. Wang: Chin. Phys. 12(2003)433.

Google Scholar

[7] M. Noorjahan, V.D. Kumari, M. Subrahmanyam, L. Panda, Appl. Catal. B: Environ. 57 (2005) 291–298.

Google Scholar

[8] J. Fernandez, M.R. Dhananjeyan, J. Kiwi, Y. Senuma, J. Hilborn, J. Phys. Chem. B 104 (2000) 5298–5301.

DOI: 10.1021/jp9943777

Google Scholar

[9] P. Maletzky, R. Bauer, J. Lahnsteiner, B. Pouresmael, Chemosphere 38 (1999) 2315.

DOI: 10.1016/s0045-6535(98)00450-0

Google Scholar

[10] M.M. Cheng, W.H. Ma, J. Li, Y.P. Huang, J.C. Zhao, Environ. Sci. Technol. 38(2004)1569.

Google Scholar

[11] Y.P. Zhao, H.Y. Hu, Appl. Catal. B: Environ. 78 (2008) 250–258.

Google Scholar

[12] Z. Sun, T. Yang, L. Wu, C. Dong, Y. Fan, D. Ge: European Pattern. CN2012121100120120626 (2012).

Google Scholar

[13] F. Gao, D. Yang, D. Cui, R. He: Chinese Pattern. CN101337695(2009).

Google Scholar

[14] Z. Ai, L. Zhang, F. Jia: Chinese Pattern. CN101717122(2009).

Google Scholar

[15] J. Ren, L. Li: Chinese Pattern. CN1865157(2006).

Google Scholar

[16] J. Zhou, L. Xu, R. Pan: Electron. Components Mater. 26(2007)6.

Google Scholar

[17] Z. Chen, G. Wang, G. Xu: Higher Education Press, Beijing(2001).

Google Scholar

[18] B. Derjaguin, L. Landau, Acta Physico Chemica URSS 14(1941)633.

Google Scholar

[19] E. J. W. Verwey, J. Th. G. Overbeek: Theory of the stability of lyophobic colloids, Amsterdam: Elsevier(1948).

Google Scholar

[20] Russel, W. B.; Saville, D. A.; Schowalter, W. R., Colloidal Dispersions, New York: Cambridge University Press (1989).

Google Scholar

[21] B.V. Derjaguin, L. Laudau: Acta Physicochim. USSR 14 (1941)633.

Google Scholar

[22] E.J.W. Verwey, J. Th.G. Overbeek: Elsevier, Amsterdam(1948).

Google Scholar

[23] C. Hou, T. Li, T. Zhao, H. Liu, L. Liu, W. Zhang: New Carbon Mater. 28(2013)184.

Google Scholar

[24] R. Pan, Y. Wu, K. Liew: Appl. Surf. Sci. 256 (2010)6564.

Google Scholar

[25] Y. Long, Z Chen, Z. Liu, Z. Zhang, M. Wan, N. Wang: Chin. Phys. 12(2003)433.

Google Scholar