Direct Electrochemical Reduction of Solid TiO2 in [BMIM]BF4-CaCl2 Ionic Liquid

Article Preview

Abstract:

The direct electrochemical reduction of solid titanium dioxide (TiO2) is conducted in [BMIM]BF4-CaCl2 ionic liquid (IL) at 100 °C using sintered TiO2 as cathode and graphite rod as anode at an electrolysis potential of 3.2 V. Cyclic voltammetry is used to investigate the mechanism and feasibility of the direct electrochemical reduction of solid TiO2 in [BMIM]BF4-CaCl2 IL at 100 °C. The surface morphologies of the cathode are examined by scanning electron microscopy(SEM). The crystal phase structure of the cathode is examined using a D8 Advance X-ray diffractometer(XRD). The results indicate that the direct electrochemical reduction of solid TiO2 in [BMIM]BF4-CaCl2 IL is feasible. A significant increase in conductivity is obtained by doping graphite into the cathode, thereby enhancing deoxidation. TiO2 reduction is conducted step by step, from outside to inside, and from high to low valence variation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

248-252

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Mo, G. Deng, F. Luo, Titanium metallurgy, in, Beijing: Metallurgical Industry Press, 1998, pp.281-332.

Google Scholar

[2] H. Li, S.M. Oppenheimer, S.I. Stupp, D.C. Dunand, L.C. Brinson, Effects of pore morphology and bone ingrowth on mechanical properties of microporous titanium as an orthopaedic implant material, Materials Transactions, 45 (2004) 1124-1131.

DOI: 10.2320/matertrans.45.1124

Google Scholar

[3] X. NIE, L. DONG, C. BAI, D. CHEN, G. QIU, Preparation of Ti by direct electrochemical reduction of solid TiO2 and its reaction mechanism, Transactions of Nonferrous Metals Society of China, 16 (2006) s723-s727.

DOI: 10.1016/s1003-6326(06)60288-4

Google Scholar

[4] G.Z. Chen, D.J. Fray, T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407 (2000) 361-364.

DOI: 10.1038/35030069

Google Scholar

[5] R.O. Suzuki, Calciothermic reduction of TiO2 and in situ electrolysis of CaO in the molten CaCl2, JPCS, 66 (2005) 461-465.

DOI: 10.1016/j.jpcs.2004.06.041

Google Scholar

[6] I. Park, T. Abiko, T.H. Okabe, Production of titanium powder directly from TiO2 in CaCl2 through an electronically mediated reaction (EMR), JPCS, 66 (2005) 410-413.

DOI: 10.1016/j.jpcs.2004.06.052

Google Scholar

[7] F. Endres, Ionic liquids: solvents for the electrodeposition of metals and semiconductors, ChemPhysChem, 3 (2002) 144-154.

DOI: 10.1002/1439-7641(20020215)3:2<144::aid-cphc144>3.0.co;2-#

Google Scholar

[8] M. Ueda, H. Kigawa, T. Ohtsuka, Co-deposition of Al-Cr-Ni alloys using constant potential and potential pulse techniques in AlCl3-NaCl-KCl molten salt, Electrochim Acta, 52 (2007) 2515-2519.

DOI: 10.1016/j.electacta.2006.09.001

Google Scholar

[9] M. Jafarian, M.G. Mahjani, F. Gobal, I. Danaee, Effect of potential on the early stage of nucleation and growth during aluminum electrocrystallization from molten salt (AlCl3-NaCl-KCl), J Electroanal Chem, 588 (2006) 190-196.

DOI: 10.1016/j.jelechem.2005.12.028

Google Scholar

[10] T. Jiang, M.J. Chollier Brym, G. Dubé, A. Lasia, G.M. Brisard, Electrodeposition of aluminium from ionic liquids: Part II-studies on the electrodeposition of aluminum from aluminum chloride (AICl3)-trimethylphenylammonium chloride (TMPAC) ionic liquids, Surf Coat Technol, 201 (2006).

DOI: 10.1016/j.surfcoat.2005.12.024

Google Scholar

[11] T. Jiang, M.J. Chollier Brym, G. Dubé, A. Lasia, G.M. Brisard, Electrodeposition of aluminium from ionic liquids: Part I-electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)-1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids, Surf Coat Technol, 201 (2006).

DOI: 10.1016/j.surfcoat.2005.10.046

Google Scholar

[12] G. Yue, S. Zhang, Y. Zhu, X. Lu, S. Li, Z. Li, A promising method for electrodeposition of aluminium on stainless steel in ionic liquid, AlChE J, 55 (2009) 783-796.

DOI: 10.1002/aic.11698

Google Scholar

[13] J.Z. Yang, Y. Jin, Y.H. Cao, L.X. Sun, Z.C. Tan, Studies on Electrochemical Stability of Room Temperature Ionic Liquids, CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE EDITION-, 25 (2004) 1733-1735.

Google Scholar

[14] G.Z. Chen, D.J. Fray, Voltammetric studies of the oxygen-titanium binary system in molten calcium chloride, JElS, 149 (2002) E455.

DOI: 10.1149/1.1513985

Google Scholar

[15] D.J. Fray, Emerging molten salt technologies for metals production, JOM Journal of the Minerals, Metals and Materials Society, 53 (2001) 27-31.

DOI: 10.1007/s11837-001-0052-5

Google Scholar

[16] M. Ma, D. Wang, W. Wang, X. Hu, X. Jin, G.Z. Chen, Extraction of titanium from different titania precursors by the FFC Cambridge process, JAllC, 420 (2006) 37-45.

DOI: 10.1016/j.jallcom.2005.10.048

Google Scholar

[17] G.Z. Chen, E. Gordo, D.J. Fray, Direct electrolytic preparation of chromium powder, Metallurgical and Materials Transactions B, 35 (2004) 223-233.

DOI: 10.1007/s11663-004-0024-6

Google Scholar

[18] C. Tiyapiboonchaiya, D.R. MacFarlane, J. Sun, M. Forsyth, Polymer - in - ionic - liquid electrolytes, MmCP, 203 (2002) 1906-(1911).

Google Scholar

[19] S. Wang, Y. Li, Reaction mechanism of direct electro-reduction of titanium dioxide in molten calcium chloride, J. Electroanal. Chem., 571 (2004) 37-42.

DOI: 10.1016/j.jelechem.2004.04.010

Google Scholar