An Assessment of Interatomic Potentials for Yittria-Stablized Zirconia

Article Preview

Abstract:

Six interatomic potentials based on Buckingham potential form for yttria-stablized zirconia have been critically assessed by predicting lattice constants, dielectric constants, and elastic properties using the mean-field approach. The content of Y2O3 is set to the range from 8 to 24 mol%. It has been found out that no potential can reproduce all the fundamental properties. Taking all the simulation and comparison results into consideration, the potential of Butler (1981) displays the highest fidelity, and the potential of Lewis (1985) shows the widest range of applicability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

239-247

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Minh N Q 1993 J. Am. Ceram. Soc 76 563.

Google Scholar

[2] Giuseppe F, Luciano C, Giovanni Z 2009 Phys. Rev. B 79 214102.

Google Scholar

[3] Bieberle A, Gauckler L J 2002 Solid State Ionics 146 23.

Google Scholar

[4] Kilo M, Argirusis C, Borchardt G, Jackson R A 2003 Phys. Chem 5 2219.

Google Scholar

[5] Schelling P K, Phillpot S R, Wolf D 2001 J. Am. Ceram. Soc 84 1609.

Google Scholar

[6] Dwivedi A, Cormack A N 1990 Philos. Mag. A 61 1.

Google Scholar

[7] Catlow C R A 1997 Proc. R. Soc. A. 353 533.

Google Scholar

[8] Butler V, Catlow C R A, Fender B E F 1981 Solid State Ionics 5 539.

Google Scholar

[9] Binks D J, Grimes R W 1993 J. Am. Ceram. Soc 76 2370.

Google Scholar

[10] Grimes L, Grimes R W, SickafusK E 2000 J. Am. Ceram. Soc 83 1873.

Google Scholar

[11] Grimes R W, Busker G, McCoy M A, Chroneos A,. Kilner J A, Bunsen-Ges B 1997 Phys. Chem 101 1204.

Google Scholar

[12] Lewis G V, Catlow C R A 1985 J. Phys. C 18 1149.

Google Scholar

[13] Kaupp M, Reviakine R, Malkina O L, Arbuznikov A, Schimmelpfennig B, Malkin V G 2002 J. Phys. Chem 23 794.

DOI: 10.1002/jcc.10049

Google Scholar

[14] Born M, Atomtheorie des Festen Zustandes, Teubner Leipzig, (1923).

Google Scholar

[15] Ewald P P 1921 Ann. Physik 64 253.

Google Scholar

[16] Gale J D 1997 J. Chem. Soc Faraday Trans. 93 629.

Google Scholar

[17] Gale J D, Rohl A L, 2003 Mol. Simulat 29 291.

Google Scholar

[18] Hill R 1952 Process. Phys. Soc. A. 65 349.

Google Scholar

[19] Dick B G, Overhauser A W 1958 Phys Rev 112 90.

Google Scholar

[20] Kandil H M, Greiner J D, Smith J F 1984 J. Am. Ceram. Soc 67 341.

Google Scholar

[21] Pascual C, Duran P 1983 J. Am. Ceram. Soc 66 23.

Google Scholar

[22] Lau K C, Dunlap B I, 2009 J. Phys.: Condens. Matter 21 145402.

Google Scholar

[23] Chen Y, Sellar J R 1996 Solid State Ionics 86-88 207.

Google Scholar

[24] Chistyi I L, Fabelinskii I L, Kitaeva V F, Osiko V V, Pisarevskii Yu V, Sil'Vestrova I M, Sobolev N N 1977 J. Raman. Spectrosc 6 183.

DOI: 10.1002/jrs.1250060406

Google Scholar

[25] Hayakawa M, Miyauchi H, Ikegami A, Nishida M 1998 Mater. Trans. JIM 39 268.

Google Scholar

[26] SelCuk A, Atkinson A 1997 J. Eur. Ceram. Soc 17 1523.

Google Scholar

[27] Farley M, Thorp J S, Ross J S, Saunders G A 1972 J. Mater. Sci 7 475.

Google Scholar

[28] Morales M, Roa J J, Capdevila X G, Segarra M, Piñol S 2010 Acta. Mater 58 2504.

Google Scholar

[29] Botha P J, Chiang J C H, Comins J D, Mjwara P M 1993 J. Appl. Phys 73 7268.

Google Scholar

[30] Fujikane M, Setoyama D, Nagao S, Nowak R, Yamanaka S 2007 J. Alloy Compd 431 250.

Google Scholar

[31] Liu D W, Perry C H, Feinberg A A, Currat R 1987 Phys. Rev. B 36 9212.

Google Scholar

[32] Shin S, Ishigame M 1986 Phys. Rev. B 34 8875.

Google Scholar

[33] Hart S, Wallis J, Sigalas I 1986 Physica B+C 139–140 183.

Google Scholar