Effect of V/Mo Ratio on Structural Properties of VxMo(1-x)Oy Nanoparticles Used as Alkaline Fuel Cell Catalyzer

Article Preview

Abstract:

V0.3Mo0.7O3 and V0.6Mo0.4O3 nanoparticles were synthesized through reducing acidified vanadate and molybdate solution at around 60-70°C. The catalysts are aimed to be used as anode in alkaline fuel cells. BET and SEM analysis are done to characterize the obtained particles. According to the SEM results, both compounds were formed in nanosized particles and BET results showed that BET surface area of V0.3Mo0.7O3 catalyst has 5 times higher than that of V0.6Mo0.4O3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

346-349

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sharma, S., Pollet, Bruno G., Journal of Power Sources, Vol 208, 15, (2012), Pages 96–119.

Google Scholar

[2] Nonjola, Patrick T., Mathe, Mkhulu K., Modibedi, Remegia M., International Journal of Hydrogen Energy 38 (2013) 5115 -5121.

DOI: 10.1016/j.ijhydene.2013.02.028

Google Scholar

[3] Naughton, M. S., Brushett, F. R., Kenis, P. J.A., Journal of Power Sources, Vol 196(2011), Pages 1762–1768.

Google Scholar

[4] Hu, Wei-Kang., Nore´, D., Journal of Alloys and Compounds, Vol. 356–357 (2003) 734–737.

Google Scholar

[5] Rowshanzamir, S., Kazemeini, M., Journal of Power Sources, Vol 88(2000), Pages 262–268.

Google Scholar

[6] Bianchini, C., Shen, P.K., Chemical Reviews, Vol. 109 (2009), Pages 4183–4206.

Google Scholar

[7] Beyribey, B., Res Chem Intermed, Vol. 39 (2013), Pages 1183–1189.

Google Scholar

[8] Schur, M., Berns, B., Dassenoy, A., Kassatkine, I., Urban, J., Wilmes, H., Hinrichsen, O., Muhler, M., Angew, R. Schlo¨gl,. Chem. Int. Ed., Vol. 42, (2003) 3815.

DOI: 10.1002/anie.200250709

Google Scholar

[9] Chandra, A., Roberts, A. J., Slade, R. C.T., Solid State Communications, Vol 147(2008) 83–87.

Google Scholar

[10] Sugimoto, W., Murakami, K. Y., Y., Takasu, Y., Electrochim. Acta, Vol 52(2006) 1742.

Google Scholar

[11] Ahn, Y.R., Song, M.Y., Jo, S.M., Park C.R., Kim, D.Y., Nanotechnology, Vol. 17(2006) 2865.

Google Scholar

[12] Mao, L., Sotomura, T., Nakatsu, K., Koshiba, N., Zhang, D., Ohsaka, T., J. Electrochem. Soc. Vol. 149 (2002) 504–507.

Google Scholar

[13] Sapkota, P., Kim, H., Journal of Industrial and Engineering Chemistry, Vol. 16(2010) 39–44.

Google Scholar

[14] Bordes, E., Stud. Surf. Sci. Catal. Vol. 67 (1991) 21-30.

Google Scholar

[15] Bordes, E., in Elementary reaction steps in heterogeneous catalysis, R.W. Joyner and R.A. van Santen Eds, , pp.137-153, Kluwer Acad. Publ. (1993).

Google Scholar

[16] Beyribey, B., Timurkutluk, B., Ertuğrul, T. Y., Timurkutluk, Ç., Mat, D. M., Ceramics International, Vol. 39 (2013), Pages 7053-7061.

DOI: 10.1016/j.ceramint.2013.02.045

Google Scholar