[1]
S. M. Ali Dadfar, I. Alemzadeh, S. M. Reza Dadfar, M. Vosoughi, Studies on the oxygen barrier and mechanical properties of low density polyethylene/organoclay nanocomposite films in the presence of ethylene vinyl acetate copolymer as a new type of compatibilizer, Mater. Des. 32 (2011).
DOI: 10.1016/j.matdes.2010.12.028
Google Scholar
[2]
U. Gurmendi, J. I. Eguiazabal, J. Nazabal, Structure and properties of nanocomposites with a poly(trimethylene terephthalate) matrix, Eur. Polym. J. 44 (2008) 1686-1695.
DOI: 10.1016/j.eurpolymj.2008.04.001
Google Scholar
[3]
F.C. Chiu, H. -Z. Yen, and C.C. Chen, Phase morphology physical properties of PP/HDPE/organoclay (nano) composites with and without a maleated EPDM as a compatibilizer, Polym. Test. 29, (2010) 706-716.
DOI: 10.1016/j.polymertesting.2010.05.013
Google Scholar
[4]
S. C. Tjong, S. P. Bao, Fracture toughness of high density polyethylene/SEBS-g-MA/montmorillonite nanocomposites, Compos. Sci. Technol. 67 (2007) 314-323.
DOI: 10.1016/j.compscitech.2006.08.006
Google Scholar
[5]
S.T. Bee, A. Hassan, C. T. Ratnam, T. -T. Tee, and L. T. Sin, Investigation of nano-size montmorillonite on electron beam irradiated flame retardant polyethylene and ethylene vinyl acetate blends, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Mater. Atoms. 299 (2013).
DOI: 10.1016/j.nimb.2013.01.040
Google Scholar
[6]
M. Zurina, H. Ismail, C. T. Ratnam, The effect of HVA-2 on properties of irradiated epoxidized natural rubber (ENR-50), ethylene vinyl acetate (EVA), and ENR-50/EVA blend, Polym. Test. 27(2008) 480-490.
DOI: 10.1016/j.polymertesting.2008.02.001
Google Scholar
[7]
J. Sharif, K. Z. M. Dahlan, W. M. Z. W. Yunus, Electron beam crosslinking of poly(ethylene-co-vinyl acetate)/clay nanocomposites, Radiat. Phys. Chem. 76, (2007) 1698-1702.
DOI: 10.1016/j.radphyschem.2007.02.091
Google Scholar
[8]
E. Moura, E. S. R. Somessari, C. G. Silveira, H. A. Paes, C. A. Souza, W. Fernandes, J. E. Manzoli, A. B. C. Geraldo, Influence of physical parameters on mutual polymer grafting by electron beam irradiation, Radiat. Phys. Chem. 80 (2011) 175-181.
DOI: 10.1016/j.radphyschem.2010.07.029
Google Scholar
[9]
Y. H. Gad, Improving the properties of poly(ethylene-co-vinyl acetate)/clay composite by using electron beam irradiation, Nuc. Inst. Met. in Phys. Research Sec. B: Beam Interactions with Mat. Atoms. 267 (2009) 3528-3534.
DOI: 10.1016/j.nimb.2009.08.010
Google Scholar
[10]
B. Wang, X. Wang, Y. Shi, G. Tang, Q. Tang, L. Song, Y. Hu, Effect of vinyl acetate content and electron beam irradiation on the flame retardancy, mechanical and thermal properties of intumescent flame retardant ethylene-vinyl acetate copolymer, Radiat. Phys. Chem. 81 (2012).
DOI: 10.1016/j.radphyschem.2011.10.021
Google Scholar
[11]
J. Sharif, S. H. S. A. Aziz, K. Hashim, Radiation effects on LDPE/EVA blends, Radiat. Phys. Chem. 58 (2000) 191-195.
DOI: 10.1016/s0969-806x(99)00373-4
Google Scholar
[12]
H. Liu, Z. Fang, M. Peng, L. Shen, Y. Wang, The effects of irradiation cross-linking on the thermal degradation and flame-retardant properties of the HDPE/EVA/magnesium hydroxide composites, Radiat. Phys. Chem. 78 (2009) 922-926.
DOI: 10.1016/j.radphyschem.2009.06.013
Google Scholar
[13]
Kusmono, Z. A. Mohd Ishak, W. S. Chow, T. Takeichi, Rochmadi, Influence of SEBS-g-MA on morphology, mechanical, and thermal properties of PA6/PP/organoclay nanocomposites, Eur. Polym. J. 44(2008) 1023-1039.
DOI: 10.1016/j.eurpolymj.2008.01.019
Google Scholar
[14]
N. T. Dintcheva, G. Filippone, F. P. La Mantia, D. Acierno, Photo-oxidation behaviour of polyethylene/polyamide 6 blends filled with organomodified clay: Improvement of the photo-resistance through morphology modification, Polym. Degrad. Stab. 95 (2010).
DOI: 10.1016/j.polymdegradstab.2009.12.021
Google Scholar