Iterative Learning Impedance Control in Gait Rehabilitation Robot

Article Preview

Abstract:

An iterative learning impedance control algorithm is presented to control a gait rehabilitation robot. According to the circumstances of the patient, the appropriate rehabilitation target impedance parameters are set. With the adoption of iterative learning control law, the impedance error in the closed loop is guaranteed to converge to zero and the iterative trajectories follow the desired trajectories over the entire operation interval. The effectiveness of the proposed method is shown through numerical simulation results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1084-1087

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Robert Riener, Dr-Ing, Lars Lünenburger, Dr rer nat, Gery Colombo, PhD.  Human-centered robotics applied to gait training and assessment [J], Journal of Rehabilitation Research & Development . 2002. 43 (5) 679-694.

DOI: 10.1682/jrrd.2005.02.0046

Google Scholar

[2] Sai K. Banala, Seok Hun Kim, Sunil K. Agrawal, and John P. Scholz. Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX). in Proceedings of the 10th IEEE International Conference on Rehabilitation Robotics, (ICORR '07). 2009. 17 (1) 401–407.

DOI: 10.1109/biorob.2008.4762885

Google Scholar

[3] Iñaki Díaz, Jorge Juan Gil, and Emilio Sánchez. Lower-Limb Robotic Rehabilitation: Literature Review and Challenges, Journal of Robotics, vol. 2011, Article ID 759764, 11 pages, 2011. doi: 10. 1155/2011/759764.

DOI: 10.1155/2011/759764

Google Scholar

[4] A. Koenig, X. Omlin, J. Bergmann, L. Zimmerli, M. Bolliger, F. Müller and R. Riener. Controlling patient participation during robot-assisted gait training. Journal of Neuroengineering and Rehabilitation. 2011. 8 (14) 1-12.

DOI: 10.1186/1743-0003-8-14

Google Scholar

[5] Hogan, N. Impedance control: An approach to manipulators: Part 1, 2, 3. ASME J. Dyn. Syst. Measure Control. 1985. 107: 1-24.

Google Scholar

[6] Joonbum Bae, Masayoshi Tomizuka. A gait rehabilitation strategy inspired by an iterative learning algorithm. Mechatronics. 2012. 22 (2) 213-221.

DOI: 10.1016/j.mechatronics.2012.01.009

Google Scholar

[7] Krakauer, J. W. Motor learning: its relevance to stroke recovery and neurorehabilitation. Current Opinion in Neurology. 2006. 19 84-90.

DOI: 10.1097/01.wco.0000200544.29915.cc

Google Scholar