Finite Element Modeling of Optical Path Length Control Device for Laser Gyroscope

Article Preview

Abstract:

Optical path length variations due to temperature, manufacturing misalignments, operation environments can affect the performance of ring laser gyroscope (RLG). This paper presents a structural design of optical path length control device (PLC) using finite element analysis. The static analysis and harmonic response analysis of the PLC is performed to investigate the deformation on different voltage, and model analysis is selected to determine the natural frequency and eigenmodes. To validate the simulation results, an experiment on RLG with mode-scanning is carried out and the maximum errors are within 0.025um. The experiment results are found to be in good agreement with the simulation results. The results indicate that the finite element model can be beneficial to designing and optimizing the structural parameters for the PLC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1169-1175

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.H. Titterton and J.L. Weston: Strapdown Inertial Navigation Technology (Institution of Electrical Engineers, Britain 2004).

Google Scholar

[2] T. Tucker, E. Levinson, The AN/WSN-7B marine gyrocompass/navigator [C]. ION NTM, 2000: 348-357.

Google Scholar

[3] X.D. Yu, G. Wei, X.W. Long, J.X. Tang: Int. J. Precis. Eng. Manuf. Vol. 14 (2013), p.415.

Google Scholar

[4] A. Lawrence: Modern Inertial Technology: Navigation, Guidance, and Control (Springer-Verlag, Inc., New York 1998).

Google Scholar

[5] R. Rodloff: IEEE J. Quantum Electron. Vol. 23 (1987), p.438.

Google Scholar

[6] R. Baumann, U.S. Patent 4, 488, 080. (1984).

Google Scholar

[7] S.C. Albers, T.J. Callaghan, B.A. Seiber, T.A. Toth, R.W. Derry and T.J. Podgorski, U.S. Patent 5, 148, 076. (1991).

Google Scholar

[8] C.M. Schober, U.S. Patent 7, 068, 373 B2. (2006).

Google Scholar

[9] N. R. Zapotyl'ko, A. A. Nedzvetskaya and I. N. Polekhin: J. Opt. Technol. Vol. 78 (2011), p.646.

Google Scholar

[10] N. R. Zapotyl'ko, A. A. Katkov and A. A. Nedzvetskaya: J. Opt. Technol. Vol. 78 (2011), p.648.

Google Scholar

[11] S. H. Lee, W. H. Shon, S. W. Suh, S. N. Yu and C. S. Han: Int. J. Precis. Eng. Manuf. Vol. 12 (2011), p.91.

Google Scholar

[12] G. Song, X. Zhou and W. Binienda: Smart Mater. Struct. Vol. 13 (2004), p.30.

Google Scholar

[13] L.K. Wang, Y. Lu, Y. Xiang, L and Qin, D.K. Cai: Ceram. Int. Vol. 39(S1) (2013), p. S739.

Google Scholar

[14] S.L. Jin, X.W. Long, X.H. Li, J. Yuan and H.C. Zhao: ACTA OPTICA SINICA Vol. 26 (2006), p.562. (in Chinese).

Google Scholar

[15] C.H. Huang, C.C. Ma and Y.C. Lin: IEEE Trans. Ultrason. Ferroelectr. Freq. Control Vol. 52 (2005), p.1204.

Google Scholar