Disturbed Chaotic Systems Synchronization via Robust Mixed Functional Projective Method

Article Preview

Abstract:

Robust mixed functional projective synchronization (RMFPS), which is the generalized synchronization idea developed very recently, is investigated in this paper. Based on Lyapunov stability theory and linear matrix inequality (LMI), some novel stability criterions for the synchronization between drive and response chaotic systems with disturbances are derived, and then a simple linear state feedback synchronization controller is designed. In order to test the proposed method, numerical simulations of hyper-chaotic unified systems with disturbances are then provided to show the effectiveness and feasibility of this chaos control and synchronization schemes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1293-1297

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. N. Lorenz: J. Atmos. Sci. Vol. 20 (1963), p.130.

Google Scholar

[2] P. He, H. Y. Lan, and G. Q. Tan: International Journal of Applied Mathematics and Mechanics Vol. 2011, (2011) , p.1007.

Google Scholar

[3] P. He, International Journal of Applied Mathematics and Mechanics Vol. 2011 (2011) , P. 1012.

Google Scholar

[4] L. M. Pecora: Phys. Rev. Lett. Vol. 64(1990), p.821.

Google Scholar

[5] Y. Chen, M. Li, and Z. Cheng: Math. Comput. Model. Vol. 52(2010), p.567.

Google Scholar

[6] P. He, and F. Tan: International Journal of Nonlinear Science Vol. 12(2011), P. 373.

Google Scholar

[7] P. He, X. H. Ren, and F. H. Li: Journal of Central China Normal University (Natural Sciences) Vol. 46(2012), P. 35 in Chinese.

Google Scholar

[8] M. Ho, Y. Hung, and C. Chou: Phys. Lett. A Vol. 296(2002), p.43.

Google Scholar

[9] P. He, S. H. Ma, and T. Fan: Chaos Vol. 22(2012), p.043151.

Google Scholar

[10] J. H. Lü, G. R. Chen, D. Z. Cheng, and S. Celikovsky: Int. J. Bifurcat. Chaos Vol. 12(2002), p.2917.

Google Scholar

[11] M. V. Thuan, and N. T. Thanh Huyen: Differential Equations and Control Processes Vol. 2011(2011), p.178.

Google Scholar

[12] X. Y. Wang: Commun. Nonlinear Sci. Numer. Simul. Vol. 17(2012), p.953.

Google Scholar