Numerical Studies on Resistive Wall Instabilities in Cylindrical Plasma Confined by Surface Current

Article Preview

Abstract:

The stability of resistive wall mode is studied in cylindrical plasma confined by surface current, which is Dirac -function distribution. For Dirac -function distribution case, it is shown that the perturbations oscillate and even decline wherever the initial perturbation seed is placed. The whole system is stable and the plasma flow has little effect on it.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

785-789

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Aymar, P. Barabaschi, Y. Shimomura: The ITER design. Plasma Phys. Control. Fusion. Vol. 44(5), pp.519-565 (2002).

DOI: 10.1088/0741-3335/44/5/304

Google Scholar

[2] F. Troyon, R. Gruber, H. Saurenmann, S. Semenzato, S. Succi: MHD-Limits to Plasma Confinement. Plasma Phys. Control. Fusion. Vol. 26(1A), pp.209-215 (1984).

DOI: 10.1088/0741-3335/26/1a/319

Google Scholar

[3] D. Pfirsch, H. Tasso: A theorem on MHD-instability of plasmas with resistive walls. Nucl. Fusion. Vol. 11(3), pp.259-260 (1971).

DOI: 10.1088/0029-5515/11/3/007

Google Scholar

[4] T. H. Jensen, M. S. Chu: A Linear Model for the Tearing Mode of a Tokamak Plasma with Flow and a Resistive Wall Boundary Condition. J. Plasma Phys. Vol. 30, pp.57-63 (1983).

DOI: 10.1017/s0022377800000994

Google Scholar

[5] C. G. Gimblett: On Free Boundary Instabilities Induced By A Resistive Wall. Nucl. Fusion. Vol. 26, pp.617-625 (1986).

DOI: 10.1088/0029-5515/26/5/006

Google Scholar

[6] J. P. Freidberg, Ideal Magnetohydrodynamic, New York: Plenum Press, (1987).

Google Scholar

[7] L. E. Zakharov, S. V. Putvinskii: Effect of plasma rotation in a tokamak on the stabilizing effect of a conducting wall. Sov. J. Plasma Phys. Vol. 13, pp.118-119 (1987).

Google Scholar

[8] A. Bondeson, D.J. Ward: Stabilization of External Modes in Tokamaks by Resistive Walls and Plasma Rotation. Phys. Rev. Lett. Vol. 72(17), pp.2709-2712 (1994).

DOI: 10.1103/physrevlett.72.2709

Google Scholar

[9] D. J. Ward, A. Bondeson: Stabilization of ideal modes by resistive walls in tokamaks with plasma rotation and its effect on the beta limit. Phys. Plasmas Vol. 2(1), pp.1570-1580 (1995).

DOI: 10.1063/1.871307

Google Scholar

[10] R. Betti, J. P. Freidberg: Stability Analysis of Resistive Wall Kink Modes in Rotating Plasma. Phys. Rev. Lett. Vol. 74(15), pp.2949-2952 (1995).

DOI: 10.1103/physrevlett.74.2949

Google Scholar

[11] J. A. Wesson: Magnetohydrodynamic flow instability in the presence of resistive wall. Phys. Plasmas Vol. 5(11), pp.3816-3819 (1998).

DOI: 10.1063/1.873100

Google Scholar

[12] B. M. Veeresha, S. N. Bhattacharyya, K. Avinash: Flow driven resistive wall instability. Phys. Plasmas Vol. 6(12), pp.4479-4486 (1999).

DOI: 10.1063/1.873735

Google Scholar

[13] S. Y. Cui, X. G. Wang, Y. Liu, and B. Yu: Numerical studies for the linear growth of resistive wall modes generated by plasma flows in a slab model. Phys. Plasmas. Vol. 13, pp.094506-094510 (2006).

DOI: 10.1063/1.2356696

Google Scholar

[14] C. N. Lashmore-Davies: The resistive wall instability and critical flow velocity. Phys. Plasmas. Vol. 8(1), pp.151-157 (2001).

DOI: 10.1063/1.1324657

Google Scholar