Filling Holes in Triangular Meshes with Feature Preserved

Article Preview

Abstract:

In this paper, a novel hole-filling algorithm for triangular meshes is proposed. Firstly, the hole is triangulated into a set of new triangles using modified principle of minimum angle. Then the initial patching mesh is refined according to the density of vertices on boundary edges. Finally, the patching mesh is optimized via the bilateral filter to recover missed features. Experimental results demonstrate that the proposed algorithm fills complex holes robustly, and preserves geometric features to a certain extent as well.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

794-798

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Ohtake, A. Belyaev and H. -P. Seidel. Ridge-valley lines on meshes via implicit surface fitting. ACM Transactions on Graphics, 2004, 23(3): 609-612.

DOI: 10.1145/1015706.1015768

Google Scholar

[2] T. Ju. Fixing geometric errors on polygonal models: a survey. Journal of Computer Science and Technology, 2009, 24(1): 19-29.

DOI: 10.1007/s11390-009-9206-7

Google Scholar

[3] J. Davis, S.R. Marschner, M. Garr and M. Levoy. Filling holes in complex surfaces using volumetric diffusion. In: First International Symposium on 3D Data Processing Visualization and Transmission, Padova, 2002, 428-438.

DOI: 10.1109/tdpvt.2002.1024098

Google Scholar

[4] F.S. Nooruddin and G. Turk. Simplification and repair of polygonal models using volumetric techniques. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(2): 191-205.

DOI: 10.1109/tvcg.2003.1196006

Google Scholar

[5] T. Ju. Robust repair of polygonal models. ACM Transactions on Graphics, 2004, 23(3): 888- 895.

DOI: 10.1145/1015706.1015815

Google Scholar

[6] P. Liepa. Filling holes in meshes. In: SGP '03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing. Aire-la-Ville, Switzerland: Eurographics Association, 2003, 200-205.

Google Scholar

[7] G. Barequet and M. Sharir. Filling gaps in the boundary of a polyhedron. Computer Aided Geometric Design, 1995, 12(2): 207-229.

DOI: 10.1016/0167-8396(94)00011-g

Google Scholar

[8] R. Pfeifle and H. -P. Seidel. Triangular B-splines for blending and filling of polygonal holes. In: Proceedings of Graphics Interface, 1996, 186-193.

Google Scholar

[9] L. Kobbelt, S. Campagna, J. Vorsatz and H. -P. Seidel. Interactive multi-resolution modeling on arbitrary meshes. In: Proceedings of SIGGRAPH'98, 1998, 105-114.

DOI: 10.1145/280814.280831

Google Scholar

[10] A. Brunton, S. Wuhrer, C. Shu, P. Bose and E.D. Demaine. Filling holes in triangular meshes by curve unfolding. In: IEEE International Conference on Shape Modeling and Applications, 2009, 66-72.

DOI: 10.1109/smi.2009.5170165

Google Scholar

[11] W. Zhao, S.M. Gao and H.W. Lin. A robust hole-filling algorithm for triangular mesh. The Visual Computer: International Journal of Computer Graphics, 2007, 23(12): 987-997.

DOI: 10.1007/s00371-007-0167-y

Google Scholar

[12] C.Y. Chen and K.Y. Cheng. A sharpness-dependent filter for recovering sharp features in repaired 3D mesh models. IEEE Transactions on visualization and computer graphics, 2008, 14(1): 200-212.

DOI: 10.1109/tvcg.2007.70625

Google Scholar

[13] Y. Jun. A piecewise hole filling algorithm in reverse engineering. Computer-Aided Design, 2005, 37(2): 263-270.

DOI: 10.1016/j.cad.2004.06.012

Google Scholar

[14] G. Li, X.Z. Ye and S.Y. Zhang. An algorithm for filling complex holes in reverse engineering. Engineering with Computers, 2008, 24(2): 119-125.

DOI: 10.1007/s00366-007-0075-9

Google Scholar

[15] Z. Li, D.S. Meek and D.J. Walton. Polynomial blending in a mesh hole-filling application. Computer-Aided Design, 2010, 42: 340-349.

DOI: 10.1016/j.cad.2009.12.006

Google Scholar

[16] S. Fleishman, I. Drori and D. Cohen-Or. Bilateral mesh denoising. ACM Transactions on Graphics, 2003, 22(3): 950-953.

DOI: 10.1145/882262.882368

Google Scholar

[17] T.R. Jones, F. Durand and M. Desbrun. Non-iterative, feature-preserving mesh smoothing. ACM Transactions on Graphics, 2003, 943-949.

DOI: 10.1145/882262.882367

Google Scholar

[18] D.A. Field. Qualitative measures for initial meshes. International Journal for Numerical Methods in Engineering, 2000, 47: 887-906.

DOI: 10.1002/(sici)1097-0207(20000210)47:4<887::aid-nme804>3.0.co;2-h

Google Scholar