Differential Transform Method for the Brooks - Corey Model

Article Preview

Abstract:

Boltzmann variable is introduced as an intermediate variable in differential transform method (DTM), and an approximate analytical solution is presented about the Brooks-Corey model in Richards equation, which governs the problem of unsaturated flow in porous media. Compared with experimental data of Hall's mortar and finite element method (FEM), the results show highly accuracy in intermediate variable method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2520-2523

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. K. Zhou.: Differential transformation and its application for electrical circuits(in Chinese)( Wuuhan University Publications, China 1986).

Google Scholar

[2] C. K. Chen and S. H. Ho: Applied Mathematics and Computation Vol. 106 (1999), p.171.

Google Scholar

[3] C. K. Chen and S. P. Ju: Applied Mathematics and Computation Vol. 155 (2004), p.25.

Google Scholar

[4] I. H. A. H. Hassan: Applied Mathematical Modelling Vol. 32 (2008), p.2552.

Google Scholar

[5] J. Biazarl and M. Eslami: International Journal of Nonlinear Science Vol. 9 (2010), p.444.

Google Scholar

[6] B. Soltanalizadeh: International Journal of Pure and Applied Mathematics Vol. 78 (2012), p.299.

Google Scholar

[7] A. Ebaid, H. A. El-Arabawy and N. Y. A. Elazem: International journal of differential equations Vol. 2013 (2013), p.1.

Google Scholar

[8] T. P. Witelski: Transport in Porous Media Vol. 27 (1997), p.121.

Google Scholar

[9] D. Lockington, J. Y. Parlange and P. Dux: Materials and Structures/Mat4riaux et Constructions Vol. 32 (1999), p.342.

Google Scholar

[10] T. P. Clement, R. W. William and F. J. Molz: Journal of Hydrology Vol. 161 (1994), p.71.

Google Scholar

[11] R. G. Baca, J. N. Chung and D. J. Mulla: International Journal for Numerical Methods in Fluids Vol. 24 (1994), p.441.

Google Scholar

[12] T. P. Witelski: Advances in Water Resources Vol. 28 (2005), p.1133.

Google Scholar

[13] M. Omidvar, A. Barari, M. Momeni and D. D. Ganji: Geomechanics and Geoengineering: An International Journal Vol. 5 (2010), p.127.

Google Scholar

[14] M. T. Alquran: Applications and Applied Mathematics: An International Journal (AAM) Vol. 7 (2012), p.155.

Google Scholar

[15] M. B. Parlange, S. N. Prasad, J. Y. Parlange and M. J. M. Romkens: Water Resources Research Vol. 28 (1992), p.2793.

Google Scholar