Comparison of the Calculated and Experimentally Measured Values of Settlement and Stress State of Concrete Slab on Subsoil

Article Preview

Abstract:

At the Faculty of Civil Engineering VSB TU Ostrava testing device was constructed so that the phenomena of soil foundation interaction could be experimentally investigated and compared with numerical models. Results of experimental loading test are compared with soil foundation interaction analysis based on finite element method (FEM). The stress strain analysis of elastic halfspace by means of Gauss numerical integration and Jacobean of transformation is presented here. The arbitrary shape and general course of the loaded area in nodal points is allowed by use of 4-and 8-node isoparametric elements, numerical integration and Jacobean transformation. The objective of this paper is also improving and developing the soil-structure interaction analysis based on the experimental results and FEM.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] ČSN 73 1001 Foundation of structures. Subsoil under shallow foundations. (8/1988), Z1 (9/2009), abolished (04/2010).

Google Scholar

[2] ČSN EN 1992-1-1 (73 1201) Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings, ČNI (11/2006).

Google Scholar

[3] ČSN EN 1997-1 (73 1000) Eurocode 7: Geotechnical design - Part 1: General rules, ČNI (9/2006).

Google Scholar

[4] R. Cajka, Stress solution in elastic halfspace by means of isoparametric elements (in Czech). Transactions of the VSB - Technical University of Ostrava, Construction Series, Volume I, Number 1/2001, VSB - TU Ostrava, ISBN 80-7078-929-8, ISSN 1213-1962, (2001).

DOI: 10.17973/mmsj.2022_10_2022122

Google Scholar

[5] R. Cajka, Soil – structure interaction according to European standards (in Czech). Transactions of the VSB - Technical University of Ostrava, Construction Series, Volume II, Number 2/2002, VSB - TU Ostrava, ISBN 80-248-0397-6, ISSN 1213-1962, (2002).

DOI: 10.17973/mmsj.2022_10_2022122

Google Scholar

[6] R. Cajka, Numerical Analysis of Contact Pressure under Shallow Foundation. International Symposium on Shallow Foundations FONDSUP 2003, 5. -7. November 2003, Paris, France, ISBN 2-7208-0355-3, (2003).

Google Scholar

[7] R. Cajka, Soil – structure interaction in case of exceptional mining and flood actions, COST 12 – Final Conference Proceedings, 20th – 22nd January 2005, University of Innsbruck, Austria, ISBN 04 1536 609 7, (2005).

DOI: 10.1201/9780203970843.ch41

Google Scholar

[8] R. Cajka, P. Manasek (2005). Building Structures in Danger of Flooding. IABSE Conference New Delhi, India, Role of Structural Engineers towards Reduction of Poverty. New Delhi, India, pp.551-558, ISBN 978-3-85748-111-6, WOS: 000245746100072.

DOI: 10.2749/222137805796272296

Google Scholar

[9] R. Cajka, V. Krivy, D. Sekanina: Design and Development of a Testing Device for Experimental Measurements of Foundation Slabs on the Subsoil. Transactions of the VSB - Technical University of Ostrava, Construction Series, Volume XI, Number 1/2011, VSB - TU Ostrava, ISSN 1804-4824 (Online). doi: 10. 2478/v10160-011-0002-2, (2011).

DOI: 10.2478/v10160-011-0002-2

Google Scholar

[10] R. Cajka, Determination of Friction Parameters for Soil – Structure Interaction Tasks. Recent Researches in Environmental & Geological Sciences. Energy, Environmental and Structural Engineering Series No. 4, pp.435-440. Proceedings of the 7th WSEAS International Conference on Continuum Mechanics (CM ´12). Kos Island, Greece, July 14-17, 2012 ISSN 2227-4359, ISBN 978-1-61804-110-4, (2012).

Google Scholar

[11] R. Cajka, Accuracy of Stress Analysis Using Numerical Integration of Elastic Half-Space (2013).

Google Scholar

[12] R. Cajka, K. Burkovic, R. Fojtik, Experimental Soil – Concrete Plate Interaction Test and Numerical Models. Key Engineering Materials, Vols. 577-578, (2014).

Google Scholar

[13] R. Cajka, Analysis of Stress in Half-space using Jacobian of Transformation and Gauss Numerical Integration. Advanced Materials Research, Vol. 818 (2013).

DOI: 10.4028/www.scientific.net/amr.818.178

Google Scholar

[14] R. Cajka, K. Burkovic, V. Buchta, Foundation Slab in Interaction with Subsoil. Advanced Materials Research, Vols. 838-841, (2014), pp.375-380, Trans Tech Publications, Switzerland, doi: 10. 4028/www. scientific. net/AMR. 838-841. 375.

DOI: 10.4028/www.scientific.net/amr.838-841.375

Google Scholar

[15] R. Cajka, J. Labudkova, Influence of parameters of a 3D numerical model on deformation arising in interaction of a foundation structure and subsoil. 1st International Conference on High-Performance Concrete Structures and Materials (COSTMA '13). Budapest, Hungary, December 10-12, 2013 (in print).

Google Scholar

[16] P. Davis, P. Rabinowitz: Abscissas and Weights for Gaussian Quadratures of High Order. Journal of Research of the National Bureau of Standards, Vol. 56, No. 1, January 1956, pp.35-37 (1956).

DOI: 10.6028/jres.056.005

Google Scholar

[17] V. A. Florin: Fundamentals of Soil Mechanics, Volume I (in Russian). Gosstroyizdat, Moscow, Leningrad, (1959).

Google Scholar

[18] A.V. da Fonseca, Load tests on residual soil and settlement prediction on shallow foundation (2001), Journal of Geotechnical and Geoenvironmental Engineering, 127 (10), pp.869-884, doi: 10. 1061/(ASCE)1090-0241(2001)127: 10(869).

DOI: 10.1061/(asce)1090-0241(2001)127:10(869)

Google Scholar

[19] K.C. Foye, P. Basu, M. Prezzi, Immediate settlement of shallow foundations bearing on clay (2008) International Journal of Geomechanics, 8 (5), pp.300-310, doi: 10. 1061/ (ASCE)1532-3641(2008)8: 5(300).

DOI: 10.1061/(asce)1532-3641(2008)8:5(300)

Google Scholar

[20] J. Kralik, N. Jendzelovsky: Contact problem of reinforced-concrete girder and nonlinear Winkler foundation. International Conference Geomechanics 93, Strata Mechanics/Numerical Methods/Water Jet Cutting/Mechanical Rock Disintegration, Pages 233-236, Ostrava, Czech Republic, Sep 28-30, (1993).

DOI: 10.1016/0148-9062(95)94704-3

Google Scholar

[21] J. Krizek, Soil-structure interaction of integral bridges (2011).

Google Scholar

[22] G.X. Mei, J.H. Yin, J.M. Zai, G.F. Zhu, Immediate settlement of a rectangular foundations embedded in a saturated isotropic elastic soil (2005), Geotechnical Engineering, 36 (2), pp.109-113, ISSN: 00465828.

Google Scholar

[23] M. Özer, Comparing methods for predicting immediate settlement of shallow foundations on cohesive soils based on hypothetical and real cases (2012).

DOI: 10.2113/gseegeosci.18.4.371

Google Scholar

[24] M. Pinka, M. Stolarik, R. Fojtik, T. Petrik, Experimental Seismic Measurement on the Testing Construction and the Analyze. Transactions of the VSB - Technical University of Ostrava, Construction Series, Volume XII, Number 1/2012, VSB - TU Ostrava, ISSN 1804-4824 (Online), doi: 10. 2478/v10160-012-0006-6, (2012).

DOI: 10.2478/v10160-012-0006-6

Google Scholar

[25] H. Qiu, S. Shi, M. Li, Analysis of large-size flexible shallow foundation settlement basing on foundation-soil interaction (2012).

DOI: 10.4028/scientific5/amr.446-449.1935

Google Scholar

[26] J. Sejnoha, P. Prochazka, Numerical approach to one problem of structure-subsoil interaction (2001).

Google Scholar

[27] R. Suchomel, D. Masin, Probabilistic analyses of a strip footing on horizontally stratified sandy deposit using advanced constitutive model (2011).

DOI: 10.1016/j.compgeo.2010.12.007

Google Scholar

[28] Sucharda, O., Brozovsky, J., Bearing capacity analysis of reinforced concrete beams (2013), International Journal of Mechanics, 7 (3), pp.192-200, ISSN: 19984448.

Google Scholar

[29] Sucharda, O., Brozovsky, J., Failure and plasticity conditions of concrete in the finite element analysis (2013), Applied Mechanics and Materials, 367, pp.165-168. DOI: 10. 4028/www. scientific. net/AMM. 367. 165.

DOI: 10.4028/www.scientific.net/amm.367.165

Google Scholar