[1]
J. P. Broomfield, Corrosion of Steel in Concrete: Understanding, Investigation and Repair, 2nd edition, New York: Taylor & Francis, (2007).
Google Scholar
[2]
A. E. Aktan and K. A. Grimmelsan, The role of NDE in bridge health monitoring, Proceedings of SPIE, Denver, CO, vol. 3587, 18 July, (1999): 2–15.
Google Scholar
[3]
P. Matt, Non-destructive evaluation and monitoring of post-tensioning tendons, fib Bull. 15: Durability of post-tensioning tendon, (2001): 100-108.
Google Scholar
[4]
A. Legat, M. Leban, Ž. Bajt, Corrosion processes of steel in concrete characterized by means of electrochemical noise, Electrochimica. Acta, vol. 49, (2004): 2741–2751.
DOI: 10.1016/j.electacta.2004.01.036
Google Scholar
[5]
A. Česen, T. Kosec, A. Legat, Characterization of steel corrosion in mortar by various electrochemical and physical techniques, Corrosion. Science, vol. 75, (2013): 47–57.
DOI: 10.1016/j.corsci.2013.05.015
Google Scholar
[6]
M. Alexander, J. P. Brad , R. G. Mette, S. Henrik, F. O. John, Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurements, Cement and Concrete Research, vol. 41, (2011): 1085–1094.
DOI: 10.1016/j.cemconres.2011.06.006
Google Scholar
[7]
B. Ingham, M. Ko, N. Laycock et al. In situ synchrotron X-ray diffraction study of scale formation during CO2 corrosion of carbon steel in sodium and magnesium chloride solutions, Corrosion. Science, vol. 56, (2012): 96–104.
DOI: 10.1016/j.corsci.2011.11.017
Google Scholar
[8]
B. Fernandesa, M. Titusb, D. K. Nimsb et al. Practical assessment of magnetic methods for corrosion detection in an adjacent precast, prestressed concrete box-beam bridge, Nondestructive Testing and Evaluation, vol. 28 , no. 2, (2012): 99-118.
DOI: 10.1080/10589759.2012.695785
Google Scholar
[9]
Y. Dost, N. Apaydın, E. Dedeoğlu, et al. Non-Destructive Testing of Bosphorus Bridges, Nondestructive Testing of Materials and Structures RILEM Bookseries, vol. 6, (2013): 819-825.
DOI: 10.1007/978-94-007-0723-8_117
Google Scholar
[10]
L. Calabres, G. Campanella, E. Proverbio, Identification of corrosion mechanisms by univariate and multivariate statistical analysis during long term acoustic emission monitoring on a pre-stressed concrete beam, Corrosion Science, vol. 73, (2013).
DOI: 10.1016/j.corsci.2013.03.032
Google Scholar
[11]
M. Di Benedetti, G. Loreto, F. Matta and A. Nanni. Acoustic emission monitoring of reinforced concrete under accelerated corrosion. Materials in Civil Engineering, vol. 25, no. 8, (2013): 1022-1029.
DOI: 10.1061/(asce)mt.1943-5533.0000647
Google Scholar
[12]
M. Mousumi, K. G. Tarun. Fiber Bragg gratings in structural health monitoring—Present status and applications, Sensors and Actuators A: Physical. vol. 147, (2008): 150-164.
DOI: 10.1016/j.sna.2008.04.008
Google Scholar
[13]
Z. P. Zheng, X. N. Sun and Y. Lei, Monitoring corrosion of reinforcement in concrete structures via fiber Bragg grating sensors, Frontiers of Mechanical Engineering in China, vol 4. no. 3, (2009):. 316-319.
DOI: 10.1007/s11465-009-0040-y
Google Scholar
[13]
Z. P. Zheng, Y. Lei and X. N. Sun, Measuring corrosion of steel in concrete via Fiber Bragg Grating sensors—Lab experimental test and in-field application, Proceedings of Earth and Space (2010): 2422-2430.
DOI: 10.1061/41096(366)225
Google Scholar
[15]
Z. P. Zheng, Y. Lei, X. P. Cui and Y. Song, Non-destructive test of the steel bar by using piezoceramics sheets, Advanced Materials Research. vol. 718-720. (2013): 692-697.
DOI: 10.4028/www.scientific.net/amr.718-720.692
Google Scholar
[16]
B. L. Ervin, and H. Reis, Longitudinal guided waves for monitoring corrosion in reinforced mortar. Measurement. Science and Technology, vol. 19, no. 1, (2008): 1–19.
DOI: 10.1088/0957-0233/19/5/055702
Google Scholar
[17]
S. Sharma and A. Mukherjee, Longitudinal guided waves for monitoring chloride corrosion in reinforcing bars in concrete. Strucural Health Monioring., vol. 9, (2010): 555–567.
DOI: 10.1177/1475921710365415
Google Scholar