Preliminary Research of Truss-Wall Corrugated Cellular Solids

Article Preview

Abstract:

The objective of this study is to find the density, stiffness, and strength of truss-wall unit cell models. The diamond-corrugation, triangular-corrugation, and Navtruss-corrugation models are used for the unit cell. The ideal solutions derived for these are based on truss-wall unit cell models and are developed using the GibsonAshby theory. To verify the ideal solutions of the models, the density, strength, and stiffness are simulated using ABAQUS software and compared with the ideal solutions on a log-log scale. The material properties of stainless steel 304 are applied. The diameter is 0.5 mm; the opening width is 0.5 mm; and the corrugation angle is 45°. Consequently, the relative Youngs modulus and relative yield strength of the truss-wall unit models are good matches for the ideal expectations. It may be possible to apply a truss-wall model to diverse fields such as transportation or biomedical applications as one of the open-cell cellular solids.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-149

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.G. Evans, , J.W. Hutchinson, N.A. Fleck, M.F. Ashby, and H.N.G. Wadley: The topological design of multifunctional cellular metals, Prog. Mater. Sci. Vol. 46 (2001), pp.309-327.

DOI: 10.1016/s0079-6425(00)00016-5

Google Scholar

[2] H.N.G. Wadley, N.A. Fleck, A.G. Evans: Fabrication and structural performance of periodic cellular metal sandwich structure, Comp. Sci. Technol. Vol. 63 (2003), pp.2331-2343.

DOI: 10.1016/s0266-3538(03)00266-5

Google Scholar

[3] R. Gumruk, R.A.W. Mines: Compressive behaviour of stainless steel micro-lattice structures, Int. J. Mech. Sci. Vol. 68 (2013), pp.125-139.

Google Scholar

[4] J. Jeong, Y. Lee, M. Cho: Sequential multiscale analysis on size-dependent mechanical behavior of micro/nano-sized honeycomb structures, Mech. Mater. Vol. 57 (2013), p.109–133.

DOI: 10.1016/j.mechmat.2012.10.009

Google Scholar

[5] T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, W.B. Carter: Ultralight metallic microlattice, Sci. Vol. 334 (2011), p.962–965.

DOI: 10.1126/science.1211649

Google Scholar

[6] J. Zhang, M.F. Ashby: The out-of-plane properties of honeycombs, Int. J. Mech. Sci. 34 (1992), pp.475-489.

Google Scholar

[7] Royal Schelde Shipbuilding, P.O. Box, 16 4380 A A Vlissingen, The Netherlands.

Google Scholar

[8] M.R.M. Rejab, W.J. Cantwell: The mechanical behaviour of corrugated-core sandwich panels, Compos.: Part B 47 (2013), p.267–277.

DOI: 10.1016/j.compositesb.2012.10.031

Google Scholar

[9] G. Zhang, B. Wang, L. Ma, J. Xiong, L. Wu: Response of sandwich structures with pyramidal truss cores under the compression and impact loading, Compos. Struct. 100 (2013), p.451–463.

DOI: 10.1016/j.compstruct.2013.01.012

Google Scholar

[10] T. Bitzer, Honeycomb technology, London, Chapman & Hall (1997).

Google Scholar

[11] H.N.G. Wadley: Multifunctional periodic cellular metals, Phil. Trans.R. Soc. A (2006), p.364, 31-68.

Google Scholar

[12] V.S. Deshpande, N.A. Fleck: Collapse of truss core beams in 3-point bending, Int. J. Solids Struct 38 (2001), pp.7275-6305.

DOI: 10.1016/s0020-7683(01)00103-2

Google Scholar

[13] S. Chiras, D.R. Mumm, A.G. Evans, N. Wicks, J.W. Hutchinson, K. Dharmasena, H.N.G. Wadley, S. Fichter: The structural performance of near-optimized truss-core panels, Int. J. Solids Struct 39 (2002), pp.4093-4115.

DOI: 10.1016/s0020-7683(02)00241-x

Google Scholar

[14] J. Wang, A.G. Evans, K. Dharmasena, H.N.G. Wadley: On the performance of truss panels with Kagome cores, Int. J, Solids Struct, 40 (2003), pp.6981-6988.

DOI: 10.1016/s0020-7683(03)00349-4

Google Scholar

[15] G.W. Kooistra, V.S. Deshpande, H.N.G. Wadley: Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium, Acta Mater, 52 (2004), pp.4229-4237.

DOI: 10.1016/j.actamat.2004.05.039

Google Scholar

[16] H.J. Rathbun, Z. Wei, Y. He, F.W. Zok, A.G. Evans, D.J. Sypeck, H.N.G. Wadley: Measurement and simulation of the performance of a lightweight metallic sandwich structure with a tetrahedral truss core, J. Appl. Mech. Trans. ASME 71 (2004).

DOI: 10.1115/1.1757487

Google Scholar

[17] D.T. Queheillalt, H.N.G. Wadley: Cellular material lattices with hollow trusses, Acta Mater. 53 (2005a) , pp.303-313.

DOI: 10.1016/j.actamat.2004.09.024

Google Scholar

[18] D.T. Queheillalt, H.N.G. Wadley: Pyramidal lattice structures with hollow trusses, Mater. Sci. Eng. A 397 (2005b) , pp.132-137.

DOI: 10.1016/j.msea.2005.02.048

Google Scholar

[19] T.J. Lu: Heat transfer efficiency of metal honeycombs, Int. J. Heat Mass Transfer 42 (1999) , p.2031-(2040).

DOI: 10.1016/s0017-9310(98)00306-8

Google Scholar

[20] Information on http: /www. cellularmaterials. com/advantages. asp 2013-04-13.

Google Scholar

[21] Information on http: /www. boeing. com/Features/2012/10/bds_hrl_10_29_12. html.

Google Scholar

[22] F.W. Zok, S.A. Waltner, Z. Wei, H.J. Rathbun, R.M. McMeeking, A.G. Evans: A protocol for characterizing the structural performance of metallic sandwich panels, Int.J. Solids Struct, 41 (2004) , pp.6249-6271.

DOI: 10.1016/j.ijsolstr.2004.05.045

Google Scholar

[23] S. Hyun, A.M. Karlsson, S. Torquato, A.G. Evans: Simulated properties of Kagome and tetragonal truss core panels, Int.J. Solids Struct, 40 (2003) , pp.6989-6998.

DOI: 10.1016/s0020-7683(03)00350-0

Google Scholar

[24] D.J. Sypeck, H.N.G. Wadley: Multifunctional microtruss laminates: textile synthesis and properties, J. Mater. Res. 16 (2001) , pp.890-897.

DOI: 10.1557/jmr.2001.0117

Google Scholar

[25] R.B. Fuller, US Patent 2986241, (1961).

Google Scholar

[26] J.C. Wallach, L.J. Gisbon: Mechanical behavior of a three-dimensional truss material, Int. J. Solids Struct 38 (2001) , pp.7181-7196.

DOI: 10.1016/s0020-7683(00)00400-5

Google Scholar

[27] L.J. Gibson, M.F. Ashby: Cellular Solids-Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, (1997).

Google Scholar

[28] J.B. Torrez: Light-Weight Materials Selection for High-Speed Naval Craft, Master thesis, MIT, (2007).

Google Scholar

[29] Information on http: /www. ipm. virginia. edu/newres/pcm. topo.

Google Scholar

[30] B. Tincher: Study of Aluminum Honeycomb Structures using Finite element Analysis, Master thesis, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA, (2011).

DOI: 10.22367/jem.2022.44.16

Google Scholar

[31] A.J. Wang, D.L. McDowell: In-plane stiffness and yield strength of periodic metal honeycombs, J. Eng. Mater. Technol. 126 (2004), p.137–156.

DOI: 10.1115/1.1646165

Google Scholar

[32] F. Cote, V.S. Deshpande, N.A. Fleck, A.G. Evans: The compressive and shear responses of corrugated and diamond lattice materials, Int. J. Solids Struct. 43 (2006), p.6220–6242.

DOI: 10.1016/j.ijsolstr.2005.07.045

Google Scholar

[33] M. Zupan, V.S. Deshpande, N.A. Fleck: The out-of-plane compressive behaviour of woven-core sandwich plates, Eur. J. Mech. -A/Solids 23 (2004), p.411–421.

DOI: 10.1016/j.euromechsol.2004.01.007

Google Scholar