[1]
A.G. Evans, , J.W. Hutchinson, N.A. Fleck, M.F. Ashby, and H.N.G. Wadley: The topological design of multifunctional cellular metals, Prog. Mater. Sci. Vol. 46 (2001), pp.309-327.
DOI: 10.1016/s0079-6425(00)00016-5
Google Scholar
[2]
H.N.G. Wadley, N.A. Fleck, A.G. Evans: Fabrication and structural performance of periodic cellular metal sandwich structure, Comp. Sci. Technol. Vol. 63 (2003), pp.2331-2343.
DOI: 10.1016/s0266-3538(03)00266-5
Google Scholar
[3]
R. Gumruk, R.A.W. Mines: Compressive behaviour of stainless steel micro-lattice structures, Int. J. Mech. Sci. Vol. 68 (2013), pp.125-139.
Google Scholar
[4]
J. Jeong, Y. Lee, M. Cho: Sequential multiscale analysis on size-dependent mechanical behavior of micro/nano-sized honeycomb structures, Mech. Mater. Vol. 57 (2013), p.109–133.
DOI: 10.1016/j.mechmat.2012.10.009
Google Scholar
[5]
T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, W.B. Carter: Ultralight metallic microlattice, Sci. Vol. 334 (2011), p.962–965.
DOI: 10.1126/science.1211649
Google Scholar
[6]
J. Zhang, M.F. Ashby: The out-of-plane properties of honeycombs, Int. J. Mech. Sci. 34 (1992), pp.475-489.
Google Scholar
[7]
Royal Schelde Shipbuilding, P.O. Box, 16 4380 A A Vlissingen, The Netherlands.
Google Scholar
[8]
M.R.M. Rejab, W.J. Cantwell: The mechanical behaviour of corrugated-core sandwich panels, Compos.: Part B 47 (2013), p.267–277.
DOI: 10.1016/j.compositesb.2012.10.031
Google Scholar
[9]
G. Zhang, B. Wang, L. Ma, J. Xiong, L. Wu: Response of sandwich structures with pyramidal truss cores under the compression and impact loading, Compos. Struct. 100 (2013), p.451–463.
DOI: 10.1016/j.compstruct.2013.01.012
Google Scholar
[10]
T. Bitzer, Honeycomb technology, London, Chapman & Hall (1997).
Google Scholar
[11]
H.N.G. Wadley: Multifunctional periodic cellular metals, Phil. Trans.R. Soc. A (2006), p.364, 31-68.
Google Scholar
[12]
V.S. Deshpande, N.A. Fleck: Collapse of truss core beams in 3-point bending, Int. J. Solids Struct 38 (2001), pp.7275-6305.
DOI: 10.1016/s0020-7683(01)00103-2
Google Scholar
[13]
S. Chiras, D.R. Mumm, A.G. Evans, N. Wicks, J.W. Hutchinson, K. Dharmasena, H.N.G. Wadley, S. Fichter: The structural performance of near-optimized truss-core panels, Int. J. Solids Struct 39 (2002), pp.4093-4115.
DOI: 10.1016/s0020-7683(02)00241-x
Google Scholar
[14]
J. Wang, A.G. Evans, K. Dharmasena, H.N.G. Wadley: On the performance of truss panels with Kagome cores, Int. J, Solids Struct, 40 (2003), pp.6981-6988.
DOI: 10.1016/s0020-7683(03)00349-4
Google Scholar
[15]
G.W. Kooistra, V.S. Deshpande, H.N.G. Wadley: Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium, Acta Mater, 52 (2004), pp.4229-4237.
DOI: 10.1016/j.actamat.2004.05.039
Google Scholar
[16]
H.J. Rathbun, Z. Wei, Y. He, F.W. Zok, A.G. Evans, D.J. Sypeck, H.N.G. Wadley: Measurement and simulation of the performance of a lightweight metallic sandwich structure with a tetrahedral truss core, J. Appl. Mech. Trans. ASME 71 (2004).
DOI: 10.1115/1.1757487
Google Scholar
[17]
D.T. Queheillalt, H.N.G. Wadley: Cellular material lattices with hollow trusses, Acta Mater. 53 (2005a) , pp.303-313.
DOI: 10.1016/j.actamat.2004.09.024
Google Scholar
[18]
D.T. Queheillalt, H.N.G. Wadley: Pyramidal lattice structures with hollow trusses, Mater. Sci. Eng. A 397 (2005b) , pp.132-137.
DOI: 10.1016/j.msea.2005.02.048
Google Scholar
[19]
T.J. Lu: Heat transfer efficiency of metal honeycombs, Int. J. Heat Mass Transfer 42 (1999) , p.2031-(2040).
DOI: 10.1016/s0017-9310(98)00306-8
Google Scholar
[20]
Information on http: /www. cellularmaterials. com/advantages. asp 2013-04-13.
Google Scholar
[21]
Information on http: /www. boeing. com/Features/2012/10/bds_hrl_10_29_12. html.
Google Scholar
[22]
F.W. Zok, S.A. Waltner, Z. Wei, H.J. Rathbun, R.M. McMeeking, A.G. Evans: A protocol for characterizing the structural performance of metallic sandwich panels, Int.J. Solids Struct, 41 (2004) , pp.6249-6271.
DOI: 10.1016/j.ijsolstr.2004.05.045
Google Scholar
[23]
S. Hyun, A.M. Karlsson, S. Torquato, A.G. Evans: Simulated properties of Kagome and tetragonal truss core panels, Int.J. Solids Struct, 40 (2003) , pp.6989-6998.
DOI: 10.1016/s0020-7683(03)00350-0
Google Scholar
[24]
D.J. Sypeck, H.N.G. Wadley: Multifunctional microtruss laminates: textile synthesis and properties, J. Mater. Res. 16 (2001) , pp.890-897.
DOI: 10.1557/jmr.2001.0117
Google Scholar
[25]
R.B. Fuller, US Patent 2986241, (1961).
Google Scholar
[26]
J.C. Wallach, L.J. Gisbon: Mechanical behavior of a three-dimensional truss material, Int. J. Solids Struct 38 (2001) , pp.7181-7196.
DOI: 10.1016/s0020-7683(00)00400-5
Google Scholar
[27]
L.J. Gibson, M.F. Ashby: Cellular Solids-Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, (1997).
Google Scholar
[28]
J.B. Torrez: Light-Weight Materials Selection for High-Speed Naval Craft, Master thesis, MIT, (2007).
Google Scholar
[29]
Information on http: /www. ipm. virginia. edu/newres/pcm. topo.
Google Scholar
[30]
B. Tincher: Study of Aluminum Honeycomb Structures using Finite element Analysis, Master thesis, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA, (2011).
DOI: 10.22367/jem.2022.44.16
Google Scholar
[31]
A.J. Wang, D.L. McDowell: In-plane stiffness and yield strength of periodic metal honeycombs, J. Eng. Mater. Technol. 126 (2004), p.137–156.
DOI: 10.1115/1.1646165
Google Scholar
[32]
F. Cote, V.S. Deshpande, N.A. Fleck, A.G. Evans: The compressive and shear responses of corrugated and diamond lattice materials, Int. J. Solids Struct. 43 (2006), p.6220–6242.
DOI: 10.1016/j.ijsolstr.2005.07.045
Google Scholar
[33]
M. Zupan, V.S. Deshpande, N.A. Fleck: The out-of-plane compressive behaviour of woven-core sandwich plates, Eur. J. Mech. -A/Solids 23 (2004), p.411–421.
DOI: 10.1016/j.euromechsol.2004.01.007
Google Scholar