[1]
Remondino, F. and S. El‐Hakim, Image‐based 3D Modelling: A Review. The Photogrammetric Record, 2006. 21(115): pp.269-291.
DOI: 10.1111/j.1477-9730.2006.00383.x
Google Scholar
[2]
Stylianou, G. and A. Lanitis, Image based 3d face reconstruction: a survey. International Journal of Image and Graphics, 2009. 9(02): pp.217-250.
DOI: 10.1142/s0219467809003411
Google Scholar
[3]
Huang, Z.K., et al., A New Embossing Method for Gray Images Using Kalman Filter. Applied Mechanics and Materials, 2011. 39: pp.488-491.
DOI: 10.4028/www.scientific.net/amm.39.488
Google Scholar
[4]
Weyrich, T., et al., Digital bas-relief from 3D scenes. ACM Transactions on Graphics (TOG), 2007. 26(3): p.32.
DOI: 10.1145/1276377.1276417
Google Scholar
[5]
Sun, X., et al., Bas-relief generation using adaptive histogram equalization. Visualization and Computer Graphics, IEEE Transactions on, 2009. 15(4): pp.642-653.
DOI: 10.1109/tvcg.2009.21
Google Scholar
[6]
Governi, L., et al., Digital Bas-Relief Design: a Novel Shape from Shading-Based Method. Computer-Aided Design and Applications, 2013. 11(2): pp.153-164.
DOI: 10.1080/16864360.2014.846073
Google Scholar
[7]
Kerber, J., et al., Real-time generation of digital bas-reliefs. Computer-Aided Des. Appl, 2010. 7(4): pp.465-478.
DOI: 10.3722/cadaps.2010.465-478
Google Scholar
[8]
Furferi, R., et al., 3D model retrieval from mechanical drawings analysis. International Journal of Mechanics, 2011. 5(2): pp.91-99.
Google Scholar
[9]
Governi, L., et al., 3D geometry reconstruction from orthographic views: A method based on 3D image processing and data fitting. Computers in Industry, (2013).
DOI: 10.1016/j.compind.2013.02.003
Google Scholar
[10]
Governi, L., et al., Improving surface reconstruction in Shape from Shading using easy-to-set boundary conditions. International Journal of Computational Vision and Robotics, forthcoming (2013).
DOI: 10.1504/ijcvr.2013.056041
Google Scholar
[11]
Wang, M., J. Chang, and J.J. Zhang. A review of digital relief generation techniques. in Computer Engineering and Technology (ICCET), 2010 2nd International Conference on. 2010. IEEE.
DOI: 10.1109/iccet.2010.5485636
Google Scholar
[12]
Oouchi, S., K. Yamazawa, and L. Secchi, Reproduction of Tactile Paintings for Visual Impairments Utilized Three-Dimensional Modeling System and the Effect of Difference in the Painting Size on Tactile Perception, in Computers Helping People with Special Needs, K. Miesenberger, et al., Editors. 2010, Springer Berlin Heidelberg. pp.527-533.
DOI: 10.1007/978-3-642-14100-3_79
Google Scholar
[13]
Carfagni, M., et al., Tactile representation of paintings: An early assessment of possible computer based strategies. Progress in Cultural Heritage Preservation, Lecture Notes in Computer Science 2012. 7616 LNCS: p.9.
DOI: 10.1007/978-3-642-34234-9_26
Google Scholar
[14]
Volpe, Y., et al., Computer-based methodologies for semi-automatic 3D model generation from paintings. Int. J. Computer Aided Engineering and Technology, 2014. 6(1): p.25.
DOI: 10.1504/ijcaet.2014.058012
Google Scholar
[15]
Yan, X. and P. Gu, A review of rapid prototyping technologies and systems. Computer-Aided Design, 1996. 28(4): pp.307-318.
DOI: 10.1016/0010-4485(95)00035-6
Google Scholar
[16]
Chua, C.K., K.F. Leong, and C.C.S. Lim, Rapid prototyping: principles and applications. 2010: World Scientific.
Google Scholar
[17]
Noorani, R., Rapid prototyping. 2006: Wiley.
Google Scholar