Methods of Constructing and Enumerating the Steiner Triple System with Order 31

Article Preview

Abstract:

This paper describes the basic concept of constructing Steiner triple system of order and gives the definition edge matrix of a complete graph. It proposes a method of constructing Steiner triple system of order. The entire procedure of constructing Steiner triple system of order .It discusses the enumeration problem of Steiner triple system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3061-3064

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.H. vanLint R.M. Wilson. A Course in Combinatorics[M]. Beijing: China Machine Dress. (2004).

Google Scholar

[2] Fred S. Roberts. Barry Tesman. Applied Combinatorics[M]. Beijing: China Machine Dress. (2007).

Google Scholar

[3] Douglas B. West. lntroduction to Graph Theory[M]. Beijing: China Machine Dress. (2004).

Google Scholar

[4] Shen H, Wang Y. Embeddings of resolvable triple systems[J ]. J of Combin Theory (A) , 2000, 89 (1) : 21- 42.

Google Scholar

[5] K. Petteri, R.J. Patric, ÖstergÅrd, Svetlana Topalova, Rosen Zlatarski, Steiner triple systems of order 19 and 21 with subsystems of order 7, Discrete Mathematics, Vol. 308, No. 13, 2732-2741, (2008).

DOI: 10.1016/j.disc.2006.06.038

Google Scholar

[6] H. Peter, On the chromatic number of Steiner triple systems of order 25, Discrete Mathematics, Vol. 299, No. 1-3, 120-128, (2005).

DOI: 10.1016/j.disc.2004.07.023

Google Scholar

[7] B. Darryn, M. Barbara, Q. Kathleen, S. Bridget, Existence and embeddings of partial Steiner triple systems of order ten with cubic leaves, Discrete Mathematics, Vol. 284, No. 1-3, 83-95, (2004).

DOI: 10.1016/j.disc.2004.01.009

Google Scholar

[8] C. Lindner, Q. Gaetano, C. Rodger, Embedding Steiner triple systems in hexagon triple systems, Discrete Mathematics, Vol. 309, No. 2, 487-490, (2009).

DOI: 10.1016/j.disc.2007.12.040

Google Scholar

[9] A. Forbes, M. Grannell, T. Griggs, On 6-sparse Steiner triple systems, Journal of Combinatorial Theory, Series A, Vol. 114, No. 2, 235-252, (2007).

DOI: 10.1016/j.jcta.2006.04.003

Google Scholar

[10] K. Daniel, M. Edita, P. Attila, S. Jean-Sébastien, Edge-colorings of cubic graphs with elements of point-transitive Steiner triple systems, Electronic Notes in Discrete Mathematics, Vol. 29, No. 2, 23-27, (2007).

DOI: 10.1016/j.endm.2007.07.005

Google Scholar

[11] J. Zhou, Y. Chang, Existence of good large sets of Steiner triple systems, Discrete Mathematics, Vol. 309, No. 12, 3930-3935, (2009).

DOI: 10.1016/j.disc.2008.11.008

Google Scholar

[12] H. Cao, Y. Tang, On Kirkman packing designs KPD({3, 4}, v), Discrete Mathematics, Vol. 279, No. 1-3, 121-133, (2004).

DOI: 10.1016/s0012-365x(03)00263-2

Google Scholar

[13] M. Mariusz, R. Alexander, Embedding Steiner triple systems into Steiner systems S(2, 4, v), Discrete Mathematics, Vol. 274, No. 1-3, 199-212, (2004).

DOI: 10.1016/s0012-365x(03)00089-x

Google Scholar