[1]
K. Weihrauch, N. Zhong. Computing the Solution of the Korteweg–de Vries Equation with Arbitrary Precision on Turing Machines[J], Theoretical Computer Science, 332(2005) 337-366.
DOI: 10.1016/j.tcs.2004.11.005
Google Scholar
[2]
N. zhong, Klaus Weihrauch. Computablity of generalized functions. J. Assoc. for Computing Machinery, Vol. 50(4)(2003).
Google Scholar
[3]
K. Weihrauch, N. Zhong. Computing Schrödinger propagators on Type-2 Turing machines[J]. Journal of Complexity 2006, 22: 918–935.
DOI: 10.1016/j.jco.2006.06.001
Google Scholar
[4]
Dianchen Lu, Qingyan Wang. Computing the Solution of the m-Korteweg-de Vries Equation on Turing Machines[J], Electronic Notes in Theoretical Computer Science, 202(2008) 219-236.
DOI: 10.1016/j.entcs.2008.03.017
Google Scholar
[5]
Dianchen Lu, Rui Zheng: Computing the Solution of the Nonlinear Schödinger Equation with Mixed Dispersion by Turing Machines[C]. World Congress on Computer Science and Information Engineering (ICISE2009), 4001-4004.
Google Scholar
[6]
Diancheng Lu, Rui Zheng. Combined kdv equation in the Turing sense boundedness . Applied Mathematics, 2008, 21(4): 814-818.
Google Scholar
[7]
Colliander J., Keel M., Staffilani G,Takaoka H, Tao T., Sharp global wellposedness results for periodic and non-periodic KdV and modified KdV on R and T. JIAMS, 16(2003), 705-749.
DOI: 10.1090/s0894-0347-03-00421-1
Google Scholar
[8]
Guo Boling, Wang Baoxiang: The Cauchy problem for Davey-Stewantson systems. Comm. on Pure Awl. Math., LII(1999), 1477-1490.
DOI: 10.1002/(sici)1097-0312(199912)52:12<1477::aid-cpa1>3.0.co;2-n
Google Scholar
[9]
Guo Boling, Wu yaping, Orbital stbility of solitary waves for the nonlinear derivative Schrödinger equation. J. Differential Equation 123(1995), 35-55.
DOI: 10.1006/jdeq.1995.1156
Google Scholar
[10]
Wang Baoxing, Guo Boling, The Cauchy problem and the existence of scatting for the generalized Davey-Stewartson equations. Chinese Science (A), 44(8)(2001), 994-1002.
Google Scholar
[11]
Shen caixia. Modified KdV equation and D-S posedness and ill-posed problems [D]. Chinese Academy of Engineering Physics, (2006).
Google Scholar