[1]
H. Meier Ch. Haberiand. Experimental studies on selective laser melting of metallic parts [J]. Mat-wiss. u. Werkstofftech, 2008, 39(9): 665-670.
DOI: 10.1002/mawe.200800327
Google Scholar
[2]
Adam T. Clare, Paul R. Chalker, et al. Selective laser melting of high aspect ratio 3D nickel-titanium structures two way trained for MEMS applications [J]. Int J Mech Mater Des, 2008(4): 181-187.
DOI: 10.1007/s10999-007-9032-4
Google Scholar
[3]
F. Bayle M. Doubenskaia. Selective Laser Melting process monitoring with high speed infra-red camera and pyrometer [C]. Proc. Of SPIE Vol. 6985 698505-1.
DOI: 10.1117/12.786940
Google Scholar
[4]
Yadroitsev. I. Shishkovsky. P. Bertrand. Manufacturing of fine-structured 3D porous filter elements by selective laser melting [J]. Applied Surface Science, 2009, (255): 5523-5527.
DOI: 10.1016/j.apsusc.2008.07.154
Google Scholar
[5]
Rob Day, Alan Kop. Heat treatment of Ti-6Al-7Nb components produced by elective laser melting [J]. Rapid Prototyping Journal,2008, 14(5): 300-304.
DOI: 10.1108/13552540810907974
Google Scholar
[6]
MCP Group. The Product Instruction of MCP Realizer SLM. Germany: MCP Group, 2005. 5-17.
Google Scholar
[7]
K rutha J P, Froyenb L, V aerenbergha J V , et al. Selective laser melting of iron-based powder. Journal of Materials Processing Technology, 2004, 149: 616-622.
Google Scholar
[8]
Lu L., FuhJ.Y. H, Chen Z.D. et a1. In situ formation of Ti-C composite using selective laser melting[J]. Materials Research Bulletin, 2000, 35(9): 1555-1561.
DOI: 10.1016/s0025-5408(00)00339-1
Google Scholar
[9]
F Abe, E Costa Santors, Y Kitamura. Influence of forming conditions on the titanium model in rapid prototyping with the selective laser melting process [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering.
DOI: 10.1243/095440603762554668
Google Scholar
[10]
J. Krutha, L. Froyenb, J. Vaerenbergha et al. Selective laser melting of iron-based powder [J].J. Mater. Processing Technol., 2004, 149(1-3): 616-622.
Google Scholar
[11]
I. Yadroitsev, Ph. Bertrand, I. Smurov. Parametric analysis ofthe selective laser melting process[J]. Appl. Surf. Sci., 2007, 253(19): 8064-8069.
DOI: 10.1016/j.apsusc.2007.02.088
Google Scholar
[12]
Weihui Wu, Yongqiang Yang, Yanlu Huang. Direct manufacturing of Cu-based alloy parts by selective laser melting [J]. Chin. Opt. Lett., 2007, 5(1): 37-40.
Google Scholar
[13]
T. Childs, C. Hauser, M. Badrossamay. Selective laser sintering (melting)of stainless and tool steel powders: experiments and modeling [J].J. Engng. Manuf., 2005, 219(4): 339-357.
DOI: 10.1243/095440505x8109
Google Scholar
[14]
Wang Di, Yang Yongqiang, Wu Weihui. Process optimization for 316L stainless steel by fiber laser selective melting [J]. Chinese J. Lasers, 2009, 36(12): 3233-3239.
DOI: 10.3788/cjl20093612.3233
Google Scholar
[15]
E-Manufacturing Solutions. E-Manufacturing Applications [OL]. [2011-04-21]. http: ∥www. eos. info/en/applications. html.
Google Scholar
[16]
He Xingrong, Yang Yongqiang, Wu Weihuiet al. Research on direct forming of comminuted fracture surgery orienting model by selective laser melting [J].J. Biomedical Engineering, 2010, 27(3): 519-523.
Google Scholar
[17]
YanBin Chen. The modern laser welding technology. BeiJing: Sciences Press,2005. 1-206.
Google Scholar
[18]
Kruth J P, Froyen L, Van Vaerenbergh J, et al. Selective laser melting of iron-based powder. Journal of Materials Processing Technology,2004, 149(1-3): 616-622.
DOI: 10.1016/j.jmatprotec.2003.11.051
Google Scholar
[19]
Yang Y Q, Huang Y L, Wu W H. One-step shaping of Ni-Ti biomaterial by selective laser melting - art. no. 68250C. Lasers in Material Processing and Manufacturing Iii, 2008, 6825: C8250-C8250, 8258.
DOI: 10.1117/12.757753
Google Scholar
[20]
Wehmller M, Warnke P. H, Zilian C, et al. Implant design and Production-a new approach by selective laser melting. International Congress Series,2005,1281: 690-695.
DOI: 10.1016/j.ics.2005.03.155
Google Scholar
[21]
Brandner J. J, Hansjosten E. ,Anurjew E., et al. Microstructure devices generation by selective laser melting. in: Pfleging W. Proceedings of The Society of photo-optical Instrumentation Engineers (SPIE). 1000 20th ST, PO BOX10,Bellingham,WA 98227- 0010 USA: SPIE-INT SOCIETY, OPTICAL ENGINE, 2007. 645911-1-9.
DOI: 10.1117/12.698249
Google Scholar
[22]
Yadroitsev I., Bertrand Ph, Laget B, et al. Application of laser assisted technologies for fabrication of functionally graded coatings and objects for the International Thermonuclear Experimental Reactor components. Journal of Nuclear Materials,2007,362(2-3): 189-196.
DOI: 10.1016/j.jnucmat.2007.01.078
Google Scholar
[23]
Yadroltsev I., Bertrand R, Smurov I. Parametric analysis of the selective laser melting Process. Applied Surface Science, 2007, 253(19): 8064-8069.
DOI: 10.1016/j.apsusc.2007.02.088
Google Scholar
[24]
Yadroitsev I. et al. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Applied Surfaee Seienee, 2007 254(4): 980-983.
DOI: 10.1016/j.apsusc.2007.08.046
Google Scholar
[25]
Santos E.C., Shiomi M., Osakada K., et al. Rapid manufacturing of metal components by laser forming. International Journal of Machine Tools and Manufacture,2006, 46(12-13): 1459-1468.
DOI: 10.1016/j.ijmachtools.2005.09.005
Google Scholar
[26]
Kruth J. R, Froyen L, Van Vaerenbergh J., et al. Selective laser melting of ironbased Powder. Journal of Materials Processing Technology, 2004, 149(1-3): 616-622.
DOI: 10.1016/j.jmatprotec.2003.11.051
Google Scholar
[27]
Kruth J. R, Froyen L., Rombouts M., et al. New ferro powder for selective laser sintering of dense Parts. CIRP Annals-Manufacturing Technology, 2003, 52(1): 139-142.
DOI: 10.1016/s0007-8506(07)60550-2
Google Scholar
[28]
Wang Y, Bergstrom J, Burman C. Characterization of an iron-based laser sintered material. Journal of Materials Processing Technology, 2006, 172(1): 77-87.
DOI: 10.1016/j.jmatprotec.2005.09.004
Google Scholar
[29]
Gu D D, Shen Y F. Development and characterization of direct laser sintering multicomponent Cu based metal Powder. Powder Metallurgy, 2006, 49(3): 258-264.
DOI: 10.1179/174329006x95662
Google Scholar
[30]
Zhu H H,Lu L, Fuh J Y H. DeveloPment and characterization of direct lase sintering Cu-based metal Powder. Journal of Materials Processing Technology, 2003, 140: 314-317.
DOI: 10.1016/s0924-0136(03)00755-6
Google Scholar
[31]
Lu Z L. Comparisons of Indirect Selective Laser Sintering with Selective Laser Melting. FOUNDRY TECHNOLOGY, 2007, 28(11): 1436-1441.
Google Scholar
[32]
Lu Z L. Selective laser melting of Fe-N-i C alloy powders. Journal of Huazhong University of Science and Technology(Natural Science Edition)2007, 35(8): 93-96.
Google Scholar
[33]
Kruth J P, Froyen L, et al. Selective laser melting of iron-based Powder. Journal of Materials Processing Technology, 2004, 149(l-3): 616-622.
DOI: 10.1016/j.jmatprotec.2003.11.051
Google Scholar
[34]
Simehi A. Direct laser sintering of metal Powders: Mechanism, kinetics and microstructural features. Materials Science and Engineering a-Structural Materials Properties Microstructure and processing, 2006,428(1-2): 148-158.
DOI: 10.1016/j.msea.2006.04.117
Google Scholar
[35]
Simehi A, Pohl H. Effeets of laser sintering processing parameters on the microstructure and densification of iron Powder. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003, 359(l-2): 119-128.
DOI: 10.1016/s0921-5093(03)00341-1
Google Scholar
[36]
Meier H, Haberland C. Experimental studies on selective laser melting of metallic parts. Material wissenschaft Und Werkstofftechnik,2008,39(9): 665-670.
DOI: 10.1002/mawe.200800327
Google Scholar
[37]
Abe F, Santos E C, et al. Influence of forming conditions on the titanium model in rapid prototyping with the selective laser melting process. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2003, 217(l): 119-126.
DOI: 10.1243/095440603762554668
Google Scholar
[38]
Simehi A, Pohi H. Directl aser sintering of iron-graphite Powder mixture. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004, 383(2): 191-200.
DOI: 10.1016/j.msea.2004.05.070
Google Scholar
[39]
Wang Y, Bergstrom J, Burman C. Characterization of an iron-based laser sintered material. Journal of Materials Processing Technology, 2006, 172(l): 77-87.
DOI: 10.1016/j.jmatprotec.2005.09.004
Google Scholar
[40]
Traini T, Mangano C, Sammons R L, et al. Direct laser metal sintering as a new approach to fabrication of an isoelectric functionally graded material for manufacture of Porous titanium dental implants. Dental Materials, 2008, 24(11): 1525-1533.
DOI: 10.1016/j.dental.2008.03.029
Google Scholar
[41]
Simehi A. Effect of C and Cu addition on the densification and microstructure of iron Powder in direct laser sintering Process. Materials Letters, 2008, 62(17-18): 2840-2843.
DOI: 10.1016/j.matlet.2008.01.113
Google Scholar
[42]
Simehi A, Asgharzadeh H. Densification and microstructural evaluation during laser Sintering of M2 high speed steel powder. Materials Science and Technology, 2004, 20(11): 1462-1468.
DOI: 10.1179/026708304x3944
Google Scholar
[43]
Xie J W, Fox P, ONeill W, et al. Effect of direct laser re-melting processing Parameters and scanning strategies on the densification of tool steels. Journal of Materials Processing Technology, 2005, 170: 516-523.
DOI: 10.1016/j.jmatprotec.2005.05.055
Google Scholar
[44]
Mumtaz K A, Erasenthiran P, Hopkinson N. High density seleetive laser melting of Waspaloy(R). Journal of Materials Processing Technology, 2008, 195(l-3): 77-87.
DOI: 10.1016/j.jmatprotec.2007.04.117
Google Scholar
[45]
Yadroitsev I, Thivillon L, Bertrand P, et al. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Applied Surface Science, 2007, 254(4): 980-983.
DOI: 10.1016/j.apsusc.2007.08.046
Google Scholar
[46]
Sercombe T, Jones N, Day R, et al. Heat treatment of Ti-6Al-7Nb components produced by Selective laser melting . Rapid Prototyping Journal, 2008, 14(5): 300-304.
DOI: 10.1108/13552540810907974
Google Scholar
[47]
Murr L E, Quinones S A, Galonska S, et al. Microstructure and mechanical behavior of Ti-6AI-4V Produced by rapid-layer manufacturing, for biomedieal applications. Journal of The Mechanical Behavior of Biomedical Materials, 2008, DOI: 10. 1016/j. jmbbm. 2008. 05. 004.
DOI: 10.1016/j.jmbbm.2008.05.004
Google Scholar
[48]
Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6AI-4V. Acta Material, 2010, 58: 3303-3312.
DOI: 10.1016/j.actamat.2010.02.004
Google Scholar
[49]
Tang Y, Loh H T, Wong Y S, et al. Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts. Journal of Materials Processing Technology, 2003, 140: 368-372.
DOI: 10.1016/s0924-0136(03)00766-0
Google Scholar
[50]
Gu D D, Shen Y F. Balling phenomena during direct laser sintering of multi-component Cu-based metal powder. Journal of Alloys and Compounds, 2007, 432(1-2): 163-166.
DOI: 10.1016/j.jallcom.2006.06.011
Google Scholar
[51]
Nikolay K T, Sergei E M, Igor A Y, et al. Balling processes during selective laser treatment of powders. Rapid Prototyping Journal. 2004 (10): 78-87.
Google Scholar
[52]
Gu D D, Shen Y F. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Materials & Design, 2009, 30(8): 2903-2910.
DOI: 10.1016/j.matdes.2009.01.013
Google Scholar
[53]
Simchi A, Pohl H. Effects of laser sintering processing parameters on the microstructure and densification of iron powder. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003, 359(1-2): 119-128.
DOI: 10.1016/s0921-5093(03)00341-1
Google Scholar
[54]
Simchi A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2006, 428(1-2): 148-158.
DOI: 10.1016/j.msea.2006.04.117
Google Scholar
[55]
Meier H, Haberland C. Experimental studies on selective laser melting of metallic parts. Material wissenschaft Und Werkstofftechnik, 2008, 39(9): 665-670.
DOI: 10.1002/mawe.200800327
Google Scholar
[56]
Gu D D. Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS. J Alloy Comp, 2009, 473(1-2): 107-115.
DOI: 10.1016/j.jallcom.2008.05.065
Google Scholar