[1]
J. Liu, G. Liu, W. He, Y. Li: A New Digital Watermarking Algorithm Based on WBCT, Procedia Engineering, Vol. 29 (2012), pp.1559-1564.
DOI: 10.1016/j.proeng.2012.01.173
Google Scholar
[2]
C. H. Hung, H. M. Hang: A reduced-complexity image coding scheme using decision-directed wavelet-based contour let transform, Journal of Visual Communication and Image Representation, Vol. 23 (2012), pp.1128-1143.
DOI: 10.1016/j.jvcir.2012.06.008
Google Scholar
[3]
Z. Haddad, A. Beghdadi, A. Serir, A. Mokraoui: Wave atoms based compression method for fingerprint images, Pattern Recognition, Vol. 46 (2013), pp.2450-2464.
DOI: 10.1016/j.patcog.2013.02.004
Google Scholar
[4]
X. Gao, W. Lu, X. Li, D. Tao: Wavelet-based contourlet in quality evaluation of digital images, Neurocomputing, Vol. 72 (2008), pp.378-385.
DOI: 10.1016/j.neucom.2007.12.031
Google Scholar
[5]
A. M. Rufai, G. Anbarjafari, H. Demirel: Lossy image compression using singular value decomposition and wavelet difference reduction, Digital Signal Processing, Vol. 24 (2014), pp.117-123.
DOI: 10.1016/j.dsp.2013.09.008
Google Scholar
[6]
Y. Li, Y. Wang, R. Xiao, Q. Yang: Curvelet based image compression via core vector machine, Optik - International Journal for Light and Electron Optics, Vol. 124 (2013), pp.4859-4866.
DOI: 10.1016/j.ijleo.2013.02.027
Google Scholar
[7]
H. Zhu, C. Zhao, X. Zhang: A novel image encryption–compression scheme using hyper-chaos and Chinese remainder theorem, Signal Processing: Image Communication, Vol. 28 (2013), pp.670-680.
DOI: 10.1016/j.image.2013.02.004
Google Scholar