A Large Signal Model to Improve Linearity of Rf Power Amplifier

Article Preview

Abstract:

Hetero-junction Bipolar Transistors (HBTs) have become very promising devices for power amplifier design in different communication applications. This paper proposes an analytical large signal model to predict nonlinear behavior of InGaP/GaAs HBT. The proposed model is directly fitted from linear model elements using Fourier transfer functions. As a consequence, the proposed large signal model shows good insight of circuit nonlinear behavior, and can be used to analysis large signal parameters of power amplifier. Based on the proposed large signal model, power gain and phase variation of an emitter follower amplify stage under different bias conditions have been analyzed. The calculated results show that: both gain and phase properties exhibit reverse deviation in saturation compared with that in forward amplify region, and can be used to maximize the linearity of power amplifier.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1089-1094

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Costa D., Liu W.L., Harris J.S. Direct extraction of the AlGaAs/GaAs heterojunction bipolar transistor small-signal equivalent circuit. IEEE Trans Electron Dev 1991; 38: 2018–(2024).

DOI: 10.1109/16.83724

Google Scholar

[2] Sheinman B., Wasige E., Rudolph M., Doerner R., Sidorov V., Cohen S., et al. A peeling algorithm for extraction of the HBT small-signal equivalent circuit. IEEE Trans Microwave Theory Tech 2002; 50: 2804–2810.

DOI: 10.1109/tmtt.2002.805195

Google Scholar

[3] Bousnina S., Mandeville P., Kouki A.B., Surridge R., Ghannouchi .F.M. Direct parameters-extraction method for HBT small-signal model. IEEE Trans Microwave Theory Tech 2002; 50: 529–536.

DOI: 10.1109/22.982232

Google Scholar

[4] Chen H.Y., Chen K.M., Huang G.N.W., Chang C.Y. A novel approach for parameter determination of HBT small-signal equivalent circuit. IEICE Trans Electron 2005; E88-C: 1133–1141.

DOI: 10.1093/ietele/e88-c.6.1133

Google Scholar

[5] Tang W.B., Wang C.M., Hsin Y.M. A new extraction technique for complete small-signal equivalent circuit model of InGaP/GaAs HBT including base contactimpedance and AC current crowding effet. IEEE Trans Microwave Theory Tech 2006; 54: 3641–3647.

DOI: 10.1109/tmtt.2006.882411

Google Scholar

[6] A. Issaoun, F.M. Ghannouchi, A.B. Kouki. An accurate and compact large signal model for III–V HBT devices. Solid-State Electronics 2005; 49(12): 1909–(1916).

DOI: 10.1016/j.sse.2005.07.025

Google Scholar

[7] Solti Peng, Patrick J. McCleer, George I. Haddad. Nonlinear Models for the Intermodulation Analysis of FET Mixers. IEEE Trans Microwave Theory Tech 1995; 43: 1037-1045.

DOI: 10.1109/22.382063

Google Scholar

[8] C. -J. Wei, W. J. Ho and J. C. M. Hwang. Large-signal Modeling of Self-heating, Collector Transit-time, and RF- Breakdown Effects in Power HBTs. IEEE Trans Microwave Theory Tech 1996; 44(12): 2641-2647.

DOI: 10.1109/22.554615

Google Scholar

[9] A. Samelis and D. Pavildis. Heterojunction bipolar transistor large signal model for high power microwave application. IEEE MTT-S Int Microwave Symp Dig, May 1995, pp.1231-1234.

DOI: 10.1109/mwsym.1995.406193

Google Scholar

[10] A. Rodrıi´guez-Testera, O. Mojo´n, M. Ferna´ndez-Barciela, E. Sa´nchez, P.J. Tasker. Nonlinear HBT table-based model including low-frequency noise effects. Electronics Letters 2010; 46: 635-636.

DOI: 10.1049/el.2010.2883

Google Scholar

[11] M. Iwamoto, T. S. Low, C. P. Hutchinson, J. B. Scott, A. Cognata, X. Qin, L. H. Camnitz, P. M. Asbeck, and D. C. D'Avanzo. Influence of collector design on InGaP/GaAs HBT linearity, " in IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, June 2000, p.757.

DOI: 10.1109/mwsym.2000.863292

Google Scholar

[12] Malay Trivedi, Pankaj Khandelwal, Krishna Shenai. Performance Modeling of RF Power MOSFET's. IEEE Trans Electron Dev 1999; 46: 1794–1802.

DOI: 10.1109/16.777172

Google Scholar

[13] Gummel H.K., Poon H.C. An integrated charge control model of bipolar transistors. Bell Syst Tech J 1970; 49: 827–852.

DOI: 10.1002/j.1538-7305.1970.tb01803.x

Google Scholar

[14] McAndrew C.C., Seitchik J.A., Bowers D.F., Dunn M., Foisy M., Getreu I., et al. VBIC95, the vertical bipolar inter-company model. IEEE J Solid-State Circ 1996; 31(10): 1 476–1483.

DOI: 10.1109/4.540058

Google Scholar