[1]
Costa D., Liu W.L., Harris J.S. Direct extraction of the AlGaAs/GaAs heterojunction bipolar transistor small-signal equivalent circuit. IEEE Trans Electron Dev 1991; 38: 2018–(2024).
DOI: 10.1109/16.83724
Google Scholar
[2]
Sheinman B., Wasige E., Rudolph M., Doerner R., Sidorov V., Cohen S., et al. A peeling algorithm for extraction of the HBT small-signal equivalent circuit. IEEE Trans Microwave Theory Tech 2002; 50: 2804–2810.
DOI: 10.1109/tmtt.2002.805195
Google Scholar
[3]
Bousnina S., Mandeville P., Kouki A.B., Surridge R., Ghannouchi .F.M. Direct parameters-extraction method for HBT small-signal model. IEEE Trans Microwave Theory Tech 2002; 50: 529–536.
DOI: 10.1109/22.982232
Google Scholar
[4]
Chen H.Y., Chen K.M., Huang G.N.W., Chang C.Y. A novel approach for parameter determination of HBT small-signal equivalent circuit. IEICE Trans Electron 2005; E88-C: 1133–1141.
DOI: 10.1093/ietele/e88-c.6.1133
Google Scholar
[5]
Tang W.B., Wang C.M., Hsin Y.M. A new extraction technique for complete small-signal equivalent circuit model of InGaP/GaAs HBT including base contactimpedance and AC current crowding effet. IEEE Trans Microwave Theory Tech 2006; 54: 3641–3647.
DOI: 10.1109/tmtt.2006.882411
Google Scholar
[6]
A. Issaoun, F.M. Ghannouchi, A.B. Kouki. An accurate and compact large signal model for III–V HBT devices. Solid-State Electronics 2005; 49(12): 1909–(1916).
DOI: 10.1016/j.sse.2005.07.025
Google Scholar
[7]
Solti Peng, Patrick J. McCleer, George I. Haddad. Nonlinear Models for the Intermodulation Analysis of FET Mixers. IEEE Trans Microwave Theory Tech 1995; 43: 1037-1045.
DOI: 10.1109/22.382063
Google Scholar
[8]
C. -J. Wei, W. J. Ho and J. C. M. Hwang. Large-signal Modeling of Self-heating, Collector Transit-time, and RF- Breakdown Effects in Power HBTs. IEEE Trans Microwave Theory Tech 1996; 44(12): 2641-2647.
DOI: 10.1109/22.554615
Google Scholar
[9]
A. Samelis and D. Pavildis. Heterojunction bipolar transistor large signal model for high power microwave application. IEEE MTT-S Int Microwave Symp Dig, May 1995, pp.1231-1234.
DOI: 10.1109/mwsym.1995.406193
Google Scholar
[10]
A. Rodrıi´guez-Testera, O. Mojo´n, M. Ferna´ndez-Barciela, E. Sa´nchez, P.J. Tasker. Nonlinear HBT table-based model including low-frequency noise effects. Electronics Letters 2010; 46: 635-636.
DOI: 10.1049/el.2010.2883
Google Scholar
[11]
M. Iwamoto, T. S. Low, C. P. Hutchinson, J. B. Scott, A. Cognata, X. Qin, L. H. Camnitz, P. M. Asbeck, and D. C. D'Avanzo. Influence of collector design on InGaP/GaAs HBT linearity, " in IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, June 2000, p.757.
DOI: 10.1109/mwsym.2000.863292
Google Scholar
[12]
Malay Trivedi, Pankaj Khandelwal, Krishna Shenai. Performance Modeling of RF Power MOSFET's. IEEE Trans Electron Dev 1999; 46: 1794–1802.
DOI: 10.1109/16.777172
Google Scholar
[13]
Gummel H.K., Poon H.C. An integrated charge control model of bipolar transistors. Bell Syst Tech J 1970; 49: 827–852.
DOI: 10.1002/j.1538-7305.1970.tb01803.x
Google Scholar
[14]
McAndrew C.C., Seitchik J.A., Bowers D.F., Dunn M., Foisy M., Getreu I., et al. VBIC95, the vertical bipolar inter-company model. IEEE J Solid-State Circ 1996; 31(10): 1 476–1483.
DOI: 10.1109/4.540058
Google Scholar