Stability of Number-Processing Based on Information Granularity Associative with Parietal Cortex

Article Preview

Abstract:

Stability, the ability to automatically extract and produce the efficient and accurate results of a defined problem without making epistemic assumptions, is discussed here as a possible memory system for understanding complex cognitive functions of the arithmetical learning. Stability is of top priority because it may typify organization of granule (knowledge-based information unit) structure. Memory efficiencies are that they depend on both linguistic factors and exposure to arithmetic training during granule formation or consolidation, supporting the idea of analog coding of numerical representations. Neuroimaging studies suggest that the parietal lobe as a potential substrate for a domain-specific representation of numeric quantities and associative memory mechanisms in stability, and results from these studies indicate that there may be the organization of number-related processes of stability in the parietal lobe. Stability seems to depend on the automatic information-processing system's response to experiential knowledge combining granularity (degree of detail or precision), maturational constraints, spatial factors (mental number line) and linguistic factors, making it an ideal candidate for understanding how these interactions play out in the cognitive arithmetic system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

769-774

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ansari D: Nature Reviews Neuroscience, 9(4): 278-291, (2008).

Google Scholar

[2] Ansari D and Dhital B: Journal of Cognitive Neuroscience, 18(11): 1820-1828, (2006).

Google Scholar

[3] Ansari D, Garcia N, Lucas E, Hamon K, and Dhital B: Neuroreport, 16(17): 1769-1773, (2005).

DOI: 10.1097/01.wnr.0000183905.23396.f1

Google Scholar

[4] Cabeza R, Ciaramelli E, and Moscovitch M: Trends in cognitive sciences, 16( 6): 338-352, (2012).

DOI: 10.1016/j.tics.2012.04.008

Google Scholar

[5] Cantlon JF, Brannon EM, Carter EJ, and Pelphrey KA: PLoS Biology, 4(5): e125, (2006).

Google Scholar

[6] Cantlon JF, Libertus ME, Pinel P, Dehaene S, Brannon EM, and Pelphrey KA: Journal of Cognitive Neuroscience, 21(11): 2217-2229, (2009).

DOI: 10.1162/jocn.2008.21159

Google Scholar

[7] Cutini S, Scarpa F, Scatturin P, Dell'Acqua R, and Zorzi M: Cerebral Cortex, in press.

Google Scholar

[8] Dehaene S: Trends in cognitive sciences, 7(4): 145-147, (2003).

Google Scholar

[9] Dehaene S, Bossini S, and Giraux P: Journal of Experimental Psychology General, 122(3): 371-371, (1993).

DOI: 10.1037/0096-3445.122.3.371

Google Scholar

[10] Dehaene S and Brannon EM: Academic Press, (2011).

Google Scholar

[11] Dehaene S and Cohen L: Mathematical cognition, 1: 83-120, (1996).

Google Scholar

[12] Dehaene S, Molko N, Cohen L, and Wilson AJ: Current Opinion in Neurobiology, 14(2): 218-224, (2004).

DOI: 10.1016/j.conb.2004.03.008

Google Scholar

[13] Dehaene S, Piazza M, Pinel P, and Cohen L: Cognitive Neuropsychology, 20(3): 487-506, (2003).

DOI: 10.1080/02643290244000239

Google Scholar

[14] Ericsson KA and Kintsch W: Psychological Review, 102(2): 211 , (1995).

Google Scholar

[15] Hanakawa T, Honda M, Okada T, Fukuyama H, and Shibasaki H: Neuroimage, 19(2): 296-307, (2003).

DOI: 10.1016/s1053-8119(03)00050-8

Google Scholar

[16] Heine A, Wißmann J, Tamm S, De Smedt B, Schneider M, Stern E, et al: Cortex, 49(8):  2162-2177, (2013).

DOI: 10.1016/j.cortex.2012.11.009

Google Scholar

[17] Holloway ID and Ansari D: Journal of Experimental Child Psychology, 103(1): 17-29, (2009).

Google Scholar

[18] Holloway ID, Price GR, and Ansari D: Neuroimage, 49(1): 1006-1017, (2010).

Google Scholar

[19] Isaacs E, Edmonds C, Lucas A, and Gadian D: Brain, 124(9): 1701-1707, (2001).

Google Scholar

[20] Miller G: The psychological review, 63(2): 81-97, (1956).

Google Scholar

[21] Mussolin C, De Volder A, Grandin C, Schlögel X, Nassogne M-C, and Noël M-P: Journal of Cognitive Neuroscience, 22(5): 860-874, (2010).

DOI: 10.1162/jocn.2009.21237

Google Scholar

[22] Pedrycz W. Knowledge-based clustering: from data to information granules. Wiley-Interscience, (2005).

Google Scholar

[23] Pedrycz W: Computational Intelligence. Springer, 2013: 15-29.

Google Scholar

[24] Pinel P, Piazza M, Le Bihan D, and Dehaene S: Neuron, 41(6): 983-993, (2004).

DOI: 10.1016/s0896-6273(04)00107-2

Google Scholar

[25] Santens S, Roggeman C, Fias W, and Verguts T: Cerebral Cortex, 20(1): 77-88, (2010).

DOI: 10.1093/cercor/bhp080

Google Scholar

[26] Sonamthiang S, Naruedomkul K, and Cercone N. Granular Concept Mapping and Applications. Rough Sets and Intelligent Systems-Professor Zdzisław Pawlak in Memoriam. Springer, 2013: 585-603.

DOI: 10.1007/978-3-642-30344-9_22

Google Scholar

[27] Temple E and Posner MI: Proceedings of the National Academy of Sciences, 95(13): 7836-7841, (1998).

Google Scholar

[28] Wei W, Chen C, Yang T, Zhang H, and Zhou X: Human Brain Mapping, in press, (2013).

Google Scholar

[29] Woodbridge R, Chechlacz M, Humphreys GW, and Demeyere N: NeuroImage, 2: 143-150, (2013).

Google Scholar

[30] Zadeh LA: Fuzzy sets and systems, 90(2): 111-127, (1997).

Google Scholar