[1]
X. Mao, Stochastic differential equations and applications. Horwood, Chichester U K, (1997).
Google Scholar
[2]
Bharucha-Reid A T. Random integral equations. London: Akademic Press, (1972).
Google Scholar
[3]
Li G.Z. The index of fixed point for random 1-set contract operator and random fixed point theorem. Acta Mathematica Applicatae Sinica, 1996, 19(2)203-212.
Google Scholar
[4]
N. Chen, A note of random solution of a kind of random operator equation, Pure and applied mathematics, 2004, 20(2) 116-120.
Google Scholar
[5]
N. Chen, and Chen J.Q. A note on random solution for some random operator equation, Applied Mathematical Sciences, 2009, 3(50)2499-2505.
Google Scholar
[6]
S. X Zhu, The random solution of a kind of random operator equation. Advances on nature sciences, 2004, 14(10)1780-1784.
Google Scholar
[7]
J.Q. Chen, N. Chen and B.D. Tian, Some random fixed point theorems and some random operator. Proceedings of theconferenceof biomathematics, 2010, 531-534.
Google Scholar
[8]
C.X. Li, J.T. Sun, R.Y. Sun, Stability analysis of a class of stochastic differential delay equation with nonlinear impulsive effects, Journal of the Frankling Institute, 347(2010)1186-1198.
DOI: 10.1016/j.jfranklin.2010.04.017
Google Scholar
[9]
S.J. Wu, D.H. Han, H.N. Pu, Existence and uniqueness of stochastic differential equations. Acta Mathematics Sinica, Chinese Series, 51(6)(2008)1041-1052.
Google Scholar
[10]
H.G. Duan, G.Z. Li, Random Mann iteration and random fixed point theorems. Applied Mathematics Letters, 18(2005) 109-115.
DOI: 10.1016/j.aml.2004.07.019
Google Scholar
[11]
X.J. Zheng, Generalizations and application of the random fixed point theorem of random draw or compression. Journal of Jiangxi Normal University. 2006, 30(4)318-321.
Google Scholar
[12]
Li G. Z, and Duan H.G. On random fixed point theorems of random monotone operators. Applied Mathematics Letters, 18(2005)1019-1026.
DOI: 10.1016/j.aml.2004.10.006
Google Scholar
[13]
S Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 67(1979) 181-201.
DOI: 10.1016/0022-247x(79)90023-4
Google Scholar
[14]
Ismat Beg, Mujahid Abbas, Random fixed point theorems for a random operator on an unbounded subset of a Banch space, Applied Mathematics Letters, 21(2008) 1001-1004.
DOI: 10.1016/j.aml.2007.10.015
Google Scholar