Hybridization of ODNs with the Core-Shell Structure of Fe3O4 Nanoparticles and CS/ALG Composite Structure

Article Preview

Abstract:

This study develops a nanocomposite structure with magnetism and biocompatibility. Composite structures with magnetism can be applied for biomarkers, specific tissue cell detection and targeted drug therapy. This study adopts a chemical disposition method to prepare Fe3O4 magnetic nanoparticles with the average size of 20-25nm. The complex biocompatible chitosan-alginate membrane covers Fe3O4 magnetic nanoparticles and the thickness of the complex membrane is controlled at 50-80nm. The efficiency of the oligonucleotide (ODN) combination is increased through the high biocompatibility of this composite film. Two groups of different sequences of ODNs and a bridge ODN undergo hybridization. The results show that the intensity at which the Fe3O4 is covered by chitosan-alginate composite film conjugated with ODNs is 2300nN. Furthermore, Fe3O4 covered by complex membrane of chitosan-alginate hybridized with 30 μM ODNs to yield the optimum hybridization intensity of 4528 nN, and the average hybridization intensity of ODNs with different concentration is 3971 nN.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

349-353

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Khng, D. Cunliffe, S. Davies, A. Turner and N. Vulfson: Biotech. Bioeng. Vol. 60 (1998), p.419.

Google Scholar

[2] C. Sestier, F. Da-Silva, D. Savolovic, J. Roger and N. Pons: Electrophoresis Vol. 19 (1998), p.220.

Google Scholar

[3] J. Lundeberg and F. Larsen: Biotech. Annual Review Vol. 1 (1995), p.373.

Google Scholar

[4] P. Merel, B. Dupin and F. Comeau: Clinical Chem. Vol. 42 (1996), p.1285.

Google Scholar

[5] S. Guoqi and C. Yuanwei: Appl. Sur. Sci. Vol. 255 (2008), p.422.

Google Scholar

[6] L. Chang, J. Hwan, K. Se, K. Eun, K . Dong and L. Seok: Int. J. Pharm. Vol. 371 (2009), p.163.

Google Scholar

[7] M. Hui, Q. Xian, M. Yoshie and N. Tsuneji: Int. J. Pharm. Vol. 333 (2007), p.177.

Google Scholar

[8] K. Do, T. Eiichi and K. Young: Curr. Appl. Phy. Vol. 6 (2006), p.669.

Google Scholar

[9] W. Joseph, L. Guodong, and M. Arben: Anal. Chim. Acta Vol. 482 (2003), p.149.

Google Scholar

[10] C. Hong, Z. Ningning, Ji. Ying, H. Pingang and F. Yuzhi: Biosen. Bioele. Vol. 18 (2003), p.1311.

Google Scholar

[11] L. Wu, J. Yan, W. Geng, C. Da and L. Jing: Biosen. Bioele. Vol. 23 (2008), p.1534.

Google Scholar

[12] M. Cardenas, J. Campos-Teran, T. Nylander and B. Lindman: Langmuir Vol. 20 (2004), p.8597.

Google Scholar

[13] R. Lisa, Z. Xiaojun and T. Weihong: Anal. Chim. Acta Vol. 470 (2002), p.51.

Google Scholar

[14] S. Bhattacharya and S.S. Mandal: Biochim. Biophys. Acta Vol. 1323 (1997), p.29.

Google Scholar

[15] Z. Osman and A.K. Arof: Electrochim. Acta Vol. 48 (2003), p.993.

Google Scholar

[16] C. Jeon, J. Yeon and Y. Je: Water Res. Vol. 36 (2002), p.1814.

Google Scholar